• 제목/요약/키워드: 군집 주행

검색결과 75건 처리시간 0.018초

시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류 (Derivation of Digital Music's Ranking Change Through Time Series Clustering)

  • 유인진;박도형
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.171-191
    • /
    • 2020
  • 본 연구는 현대 사회에서 가장 가치 있는 문화자산이자 한류의 흐름에서 특히 중요한 위치를 차지하는 디지털 음악에 초점을 두었다. 디지털 음악에 대하여 공신력 있는 음원 차트인 '가온 차트'에 진입한 음원들의 73주간 순위 변화를 수집하였으며 유사한 특징을 가지는 패턴들로 분류하였다. 이후 각 순위 변화 패턴으로부터 주목할 만한 특징에 대한 설명적 분석을 수행하였다. 구체적으로 음원에 대한 신뢰도 이슈가 발생하기 이전 기간의 국내 발매된 디지털 음원들로 한정하여 시점을 일치시킨 후 시계열 군집분석을 통해 패턴을 도출하고자 하였다. 데이터 수집과 전처리를 통하여 742건의 중복되지 않는 음원들을 확보하였고, 시계열 순위 변화에 대한 시계열 군집분석 결과 16개의 패턴들이 도출되었다. 이후 도출된 패턴들을 기반으로 '스테디셀러'와 '원 히트 원더'의 두 가지 유형의 대표적인 패턴을 확인하였다. 나아가 두 패턴에 대하여 차트 내에서 음원의 생존 기간과 음원 순위에 관점에서 다섯 가지의 세분화된 패턴으로 분류하였다. 각 패턴들이 가지는 중요한 특징들은 다음과 같다. 원 히트 원더형 패턴에서 아티스트의 슈퍼스타 효과와 편승효과가 강하게 나타났으며, 소비자들의 디지털 음원 선택에 강한 영향을 미친다는 것을 확인하였다. 나아가 스테디셀러형 패턴을 통해서 매우 오랜시간 소비자들의 선택을 받는 음원들을 확인하였고, 소비자의 니즈를 관통하며 가장 많은 선택을 받는 음원들이 오히려 원 히트 원더형 패턴이 아니라 스테디셀러: 중기 패턴에 포진하고 있음을 확인하였다. 특히 주목할 만한 점은 스테디셀러형 패턴을 통해 기존의 패턴과는 상반되는 '차트 역주행' 현상을 확인했다는 것이다. 본 연구는 디지털 음원을 중심으로 상대적으로 소외되었던 분야인 시간의 흐름에 따른 음원의 순위 변화에 초점을 두었고, 음원의 흥행과 순위를 예측하는 것이 아니라 순위 변화의 패턴을 세분화함으로써 음원 연구에 대한 새로운 접근을 시도하였다는 점에서 의의가 있다.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.

비주기적 광위상배열에서 Side-lobe Level이 최소화된 구조 설계를 위한 최적화 알고리즘의 비교 연구 (Comparative Study of Optimization Algorithms for Designing Optimal Aperiodic Optical Phased Arrays for Minimal Side-lobe Levels)

  • 이보해;류한열
    • 한국광학회지
    • /
    • 제33권1호
    • /
    • pp.11-21
    • /
    • 2022
  • 본 연구에서는 자율주행차의 라이다 센서용 광위상배열(optical phased array, OPA)에서 우수한 신호 품질을 얻을 수 있는 방법에 대해 조사하였다. OPA를 구성하는 광 안테나가 주기적으로 배치되어 있는 경우에는 grating lobe의 형성으로 인해 빔 조향의 범위가 제한된다. 광 안테나가 비주기적으로 배치된 OPA에서는 한 개의 main lobe만 형성되어 넓은 조향 범위가 가능하지만 side lobe에 의한 잡음의 영향으로 신호 품질이 저하된다. 본 논문에서는 이러한 비주기적인 OPA에서 발생하는 잡음을 최소화하고 신호 품질을 향상시키기 위한 최적화 연구를 수행한 결과를 보고한다. 최적화를 위한 목적 함수로는 side-lobe level (SLL)을 이용하였고, SLL이 가장 낮은 안테나 배열을 구하기 위한 최적화 기법으로는 입자 군집 최적화(particle-swarm optimization, PSO), 유전 알고리즘(genetic algorithm, GA), 패턴 검색 알고리즘(pattern-search algorithm, PSA) 등을 적용하였다. 128 채널의 광 안테나 배치로 이루어진 비주기적 OPA에서 위 3가지 최적화 기법을 적용하여 결과를 비교하였다. 전반적으로 PSO와 GA는 서로 유사한 최적화 결과를 보였고, PSA는 이와는 약간 차별적인 특성을 보였다. 최적화가 이루어진 각도가 45도보다 작을 때에는 최적화 각도가 작을수록 모든 조향 각도에서의 평균적인 SLL 값이 증가하는 경향을 보였지만, 최적화가 이루어진 각도가 45도 이상일 경우에는 최적화 알고리즘에 관계없이 -13 dB 이하의 평균 SLL 값을 얻을 수 있었다. 본 연구를 통해 비주기적인 OPA에서 고품질의 신호를 얻기 위한 최적의 안테나 배열을 구하는 데 있어서 PSO, GA, PSA의 최적화 알고리즘이 유용하게 활용될 수 있음을 보였다.

고속도로 돌발상황 발생 영향 요인 연구 (A Study of the Effect Factor of Unexpected Accidents on Expressways)

  • 김혜진;공용혁;최동준
    • 한국ITS학회 논문지
    • /
    • 제22권2호
    • /
    • pp.105-116
    • /
    • 2023
  • 2차 사고의 치사율은 일반 교통사고의 7배이며 고속도로에 한정하면, 사망자 4명 중 1명은 2차 사고로 인한 사망이라고 할 수 있다. 돌발상황은 2차 사고를 유발할 수 있으며 운전자에게 대비할 시간을 주지 않아 주행속도가 높은 고속도로에서의 사고 위험은 더욱 치명적이다. 그러나 기존 연구에서는 이미 교통사고에 관한 연구를 수행하거나 교통사고 후 발생하는 2차 사고에 관한 연구를 수행하고 있어서 그 외 도로에서 발생할 수 있는 다른 돌발상황에 대해 고려하지 못하고 있다. 따라서 2차 사고로 인한 피해와 사상자 감소를 위해서는 교통사고 외에도 사고 유발 가능성을 제거하여 안전한 도로환경을 만들 필요성이 존재한다. 본 연구에서는 돌발상황과 발생요일, 발생시간, 곡선반경이 돌발상황 발생과 연관성이 있는지에 대하여 분석하였다. 돌발상황은 천안논산고속도로와 서울양양고속도로에서 2022년 발생한 자료를 사용하였으며 고속도로의 구간을 분할하여 곡선반경을 계산하고 이를 군집분석을 통해 직선부, 완화곡선부, 곡선부로 구분하여 분석하였다. 분석결과 발생요일, 발생시간, 곡선반경이 돌발상황과 연관성이 있는 것으로 분석되었다.

초소형전기차 사용자만족도 구성요인 선정을 위한 기반연구 (Basic Study for Selection of Factors Constituents of User Satisfaction for Micro Electric Vehicles)

  • 진은주;서임기;김종민;박제진
    • 대한토목학회논문집
    • /
    • 제41권5호
    • /
    • pp.581-589
    • /
    • 2021
  • 최근 국내 초소형전기차 도입이 증가하면서, 관련 시장 활성화를 위한 초소형전기차 사용자만족도에 대한 관심이 증가하고 있다. 본 논문에서는 사용자만족도 구성요인을 기반으로 초소형전기차를 활용한 공공서비스 개발에 관한 기초연구를 수행하였다. 설문조사는 ① '초소형전기차 사용자만족도 구성요인 우선순위 선정을 위한 계층화(AHP) 분석'과, ② 초소형전기차에 대한 사용자들의 선호도 및 교통서비스 제공을 위한 사전 자료수집을 위한 '초소형전기차 이미지 설문조사', ③ 실제 초소형전기차를 운행한 이용자의 사용자만족도를 조사하기 위해 '초소형전기차 운전자 사용자만족도 설문조사' 순서로 수행하였다. 계층화(AHP) 분석에서는 '사용자 이용 데이터', '차량 이동 데이터', '충전서비스 데이터'순으로 사용자들이 중요하게 여긴다는 결과를 얻었다. 초소형전기차 이미지 설문조사에서는 사용자들이 초소형전기차를 오토바이와 비교했을 때 '안전성', '내구성', '승차감', '디자인', '유지관리비', '친환경성' 측면에서 더 긍정적으로 인식하고 있었다. 초소형전기차 운전자 사용자만족도 설문조사에서는 초소형전기차를 사용하는 것이 업무수행능률에 직접적인 영향을 미치지는 않았으며, 초소형전기차의 차량크기로 인해 도로에서의 불이익을 받은 경험이 있었고, 옥외 광고용으로 초소형전기차 군집 주행 시 홍보효과가 컸지만 안전성 측면에서는 우려를 나타내고 있었다. 향후 본 연구결과를 바탕으로 사용자만족도 구조방정식 모델을 구축할 예정이며, 선제적으로 공공분야에서의 초소형전기차 활용업무 서비스에 대한 피드백 R&D를 발굴하고, 새로운 공공 이동지원 서비스 발굴을 적극적으로 모색하고자 한다.