• Title/Summary/Keyword: 군집 움직임 분석

Search Result 7, Processing Time 0.018 seconds

The Crowd Activity Analysis based on Perspective Effect in Network Camera (네트워크 카메라 영상에서 원근감 효과를 고려한 군집 움직임 분석)

  • Lee, Sang-Geol;Park, Hyun-Jun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.415-418
    • /
    • 2008
  • This paper presents a method for moving objects detection, analysis and expression how much move as numerical value from the image which is captured by a network camera. To perform this method, we process few kinds of pre-processing to remove noise that are getting background image, difference image, binarization and so on. And to consider perspective effect, we propose modified ART2 algorithm. Finally, we express the result of ATR2 clustering as numerical value. This method is robust to size of object which is changed by perspective effect.

  • PDF

An Effective Feature Extraction for Polluted Fish′s Motion Analysis (오염 물고기 움직임 분석을 위한 효율적인 특징 추출)

  • 강민경;김도현;차의영;전태수;강진숙
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.649-651
    • /
    • 2002
  • 본 논문에서는 오염된 물고기의 특성을 자동으로 분석하기 위한 진보적 행동 분석 시스템을 제안한다. 이 행동 분석 시스템은 수질 생명체들을 오염으로부터 보호할 수 있도록 하기 위한 경보 시스템으로서, 물고기의 행동 특성을 Kohonen Neural Network를 사용하여 자동으로 군집화하고 분석할 수 있도록 하였다. 이때, Neural Network의 입력으로 사용하기 위한 특징 벡터는 물고기의 좌표 위치만을 사용하지 않고 위치 좌표를 바탕으로 속도, 가속도, 각속도, 각 가속도를 구하여 이를 사용함으로써 보다 효율적인 특징 추출이 이루어질 수 있도록 하였다. 오염 생명체와 비오염 생명체의 특징을 각각 추출하여 실험해 본 결과, 오염물질에 노출된 물고기의 밤(야간) 데이터에서 다른 군집과는 다른 뚜렷한 이상 행동 특성이 나타나는 것을 알 수 있었다.

  • PDF

Efficient K-means Clustering for High-dimensional Large Data (고차원 대규모 데이터를 위한 효율적인 K-means 클러스터링)

  • Yoon, Tae-Sik;Shim, Kyu-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.33-36
    • /
    • 2011
  • 클러스터링은 데이터 포인트들을 그룹으로 묶어 데이터를 분석하는데 유용하다. 특히 K-means는 가장 널리 쓰이는 클러스터링 알고리즘으로 k개의 군집(Cluster)을 찾는다. 본 논문에서는 기존의 K-means 알고리즘과 비교해 고차원 대규모데이터에 대해서 효율적으로 동작하는 K-means 알고리즘을 제안한다. 제안된 알고리즘은 기존의 알고리즘에서와 같이 거리 정보를 이용해 불필요한 계산을 줄여나가며 또한 움직임 없는 군집들을 계산에서 제외하여 수행시간을 단축한다. 제안된 알고리즘은 기존의 관련연구에서 제안된 알고리즘에 비해 공간을 적게 쓰면서 동시에 빠르다. 실제 고차원 데이터 실험을 통해서 제안된 알고리즘의 효율성을 보였다.

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic (휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석)

  • Rhee, Hyun-Sook;Lee, Jung-Woo;Oh, Kyung-Whan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.39-44
    • /
    • 2011
  • In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

Fire-Smoke Detection Based on Video using Dynamic Bayesian Networks (동적 베이지안 네트워크를 이용한 동영상 기반의 화재연기감지)

  • Lee, In-Gyu;Ko, Byung-Chul;Nam, Jae-Yeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.388-396
    • /
    • 2009
  • This paper proposes a new fire-smoke detection method by using extracted features from camera images and pattern recognition technique. First, moving regions are detected by analyzing the frame difference between two consecutive images and generate candidate smoke regions by applying smoke color model. A smoke region generally has a few characteristics such as similar color, simple texture and upward motion. From these characteristics, we extract brightness, wavelet high frequency and motion vector as features. Also probability density functions of three features are generated using training data. Probabilistic models of smoke region are then applied to observation nodes of our proposed Dynamic Bayesian Networks (DBN) for considering time continuity. The proposed algorithm was successfully applied to various fire-smoke tasks not only forest smokes but also real-world smokes and showed better detection performance than previous method.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.