• Title/Summary/Keyword: 군집 분석 데이터 마이닝 기법

Search Result 64, Processing Time 0.021 seconds

A Study on Gene Algorithm Application for Efficient Clustring of Data Mining (데이터 마이닝의 능률적인 군집화를 위한 유전자 알고리즘 적용에 관한 연구)

  • Choi, Ho-Jin;Hong, Sung-Pye
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.41-44
    • /
    • 2009
  • 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.

  • PDF

Analysis of the abstracts of research articles in food related to climate change using a text-mining algorithm (텍스트 마이닝 기법을 활용한 기후변화관련 식품분야 논문초록 분석)

  • Bae, Kyu Yong;Park, Ju-Hyun;Kim, Jeong Seon;Lee, Yung-Seop
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1429-1437
    • /
    • 2013
  • Research articles in food related to climate change were analyzed by implementing a text-mining algorithm, which is one of nonstructural data analysis tools in big data analysis with a focus on frequencies of terms appearing in the abstracts. As a first step, a term-document matrix was established, followed by implementing a hierarchical clustering algorithm based on dissimilarities among the selected terms and expertise in the field to classify the documents under consideration into a few labeled groups. Through this research, we were able to find out important topics appearing in the field of food related to climate change and their trends over past years. It is expected that the results of the article can be utilized for future research to make systematic responses and adaptation to climate change.

인위적 데이터를 이용한 군집분석 프로그램간의 비교에 대한 연구

  • 김성호;백승익
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.35-49
    • /
    • 2001
  • Over the years, cluster analysis has become a popular tool for marketing and segmentation researchers. There are various methods for cluster analysis. Among them, K-means partitioning cluster analysis is the most popular segmentation method. However, because the cluster analysis is very sensitive to the initial configurations of the data set at hand, it becomes an important issue to select an appropriate starting configuration that is comparable with the clustering of the whole data so as to improve the reliability of the clustering results. Many programs for K-mean cluster analysis employ various methods to choose the initial seeds and compute the centroids of clusters. In this paper, we suggest a methodology to evaluate various clustering programs. Furthermore, to explore the usability of the methodology, we evaluate four clustering programs by using the methodology.

  • PDF

인위적 데이터를 이용한 군집분석 프로그램간의 비교에 대한 연구 - A Research-In-Progress Paper -

  • 김성호;백승익;최종연
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.349-357
    • /
    • 2000
  • 인터넷 비즈니스나 전자상거래와 연관되어 고객관계관리 (Customer Relationship Management: CRM)가 널리 확산됨으로 해서 군집분석에 대한 관심이 한층 높아졌고, 다양한 군집분석 프로그램이 시장에 소개되어 지고 있다. 그러나, 군집분석 프로그램들은 다른 데이터 분석 기법과는 달리 그들의 정확성을 측정하기가 매우 힘들다. 본 논문에서는 이미 알려져 있는 군집구조를 지닌 인위적 데이터를 사용하여 반복적 군집분석 프로그램 (Convergent Cluster Analysis: CCA)과 보다 전통적인 단순군집 프로그램 (One-Shot Clustering Program: Howard-Harris 프로그램), 그리고 데이터 마이닝 기법 중의 하나인 데모그래픽 군집분실 프로그램의 정확성을 비교하기 위한 현재 진행 중인 연구의 방법론을 제시하는데 그 주요 목적을 두고 있다.

  • PDF

A Clustering Method using GHSOM for Processing Large Data (GHSOM을 이용한 대용량 데이터 처리의 군집화 방법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.393-396
    • /
    • 2002
  • 최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 실제 응용분야에선 수집된 데이터는 시간이 지날수록 데이터의 양이 늘어나게 되고, 중복되는 속성과 잡음을 갖게 되어 마이닝 기법을 이용하는데 많은 시간과 비용이 소요된다. 또한 어느 속성이 중요한지 알 수 없어 중요한 속성이 중요하지 않은 속성에 의해 왜곡되거나 제대로 분석되지 않을 수 있다. 본 연구는 이러한 문제점들을 해결하기 위해 GHSOM을 이용한 계층적 신경망 군집화 방법을 제안한다. 제안하는 방법은 비리 군집의 개수를 정해줄 필요가 없고, 다양한 레벨의 군집들을 얻을 수 있는 계층적 군집화를 이루어낸다는 장점을 갖는다. 본 논문에서는 신경망 GHSOM의 구조와 특성에 대해 간략히 살펴보고 시스템 처리과정에 대해 설명한다.

  • PDF

Supervised Feature Weight Optimization for Data Mining (데이터마이닝에서 교사학습에 의한 속성 가중치 최적화)

  • 강명구;차진호;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.244-246
    • /
    • 2001
  • 최근 군집화와 분류기법이 데이터 마이닝에 중요한 도구로 많은 응용분야에 사용되고 있다. 따라서 이러한 기법을 이용하는데 있어서 각각의 속성의 중요도가 달라 중요하지 않은 속성에 의해 중요한 속성이 왜곡되거나 때로는 마이닝의 결과가 잘못되는 결과를 얻을 수 있으며, 또한 전체 데이터를 사용할 경우 마이닝 과정을 저하시키는 문제로 속성 가중치과 속성선택에 과한 연구가 중요한 연구의 대상이 되고 있다. 최근 연구되고 있는 알고리즘들은 사용자의 의도와는 상관없이 데이터간의 관계에만 의존하여 가중치를 설정하므로 사용자가 마이닝 결과를 쉽게 이해하고 분석할 수 없는 문제점을 안고 있다. 본 논문에서는 클래스 정보가 있는 데이터뿐 아니라 클래스 정보가 없는 데이터를 분석할 경우 사용자의 의도에 따라 학습할 수 있도록 각 가중치를 부여하는 속성가중치 알고리즘을 제안한다. 또한 사용자가 의도한 정보를 이용하여 속성간의 가장 최적화 된 가중치를 찾아주며, Cramer's $V^2$함수를 적합도 함수로 하는 유전자 알고리즘을 사용한다. 알고리즘의 타당성을 검증하기 위해 전자상거래상의 실험 데이터와 몇 가지 벤치마크 데이터를 이용하여 본 논문의 타당성을 보인다.

  • PDF

SOM-based Spatio-Temporal Data Mining System (SOM 기반 시공간 데이터 마이닝 시스템)

  • Kang Juyoung;Lee Bongjae;Song Jaeju;Shin Jinho;Yong Hwanseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.105-108
    • /
    • 2004
  • 데이터 양이 급증함에 따라 축적된 데이터로부터 의미있는 지식을 추출해 내고자 하는 데이터 마이닝에 대한 연구가 활발하게 진행되어 왔다. 특히 최근, 환경이 이동 분산화 되어감에 따라 감시${\cdot}$모니터링 시스템, 기상 관측 시스템, GPS 시스템과 같은 다양한 응용 시스템으로부터 방대한 양의 시공간 데이터가 발생하게 되었고, 이른 효율적으로 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 데이터 마이닝 기법의 경우 문자나 숫자 데이터를 대상으로 최적화 되어있기 때문에 시${\cdot}$공간 속성을 동시에 가지는 데이터를 분석하기에는 한계가 있는 것이 사실이다. 본 논문에서는 SOM(Self-Organizing Map)을 적용하여 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능 및 클러스터링 정확성을 다른 세 가지 군집분석 알고리즘과 비교, 분석하였다. 또한 가시화 모듈을 개발하여 입력 데이터의 특성과 결과를 더욱 정확하게 분석할 수 있도록 하였다.

  • PDF

Applying Data Mining Techniques for Book Recommendation System (도서 추천 시스템에 데이터 마이닝 기법의 적용)

  • Jin, Seung-Hoon;Kim, Byoung-Ic;Kim, Tae-Kyun;Kim, Jong-Wan;Kim, Young-Sn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.601-604
    • /
    • 2001
  • 도서 정보 추천 시스템에서 기존 사용자들의 정보를 이용하여 마이닝 기법중 군집 분석을 적용하여 사이트에 처음으로 접속하는 사용자와 접속률이 낮아 피드백 정보가 많이 없고 적절한 추천을 하지 못하는 사용자에게 비슷한 군집의 사용자들의 정보를 이용하여 적절한 정보를 추천한다. 본 논문에서는 기존의 멀티에이전트 추천 시스템에 데이터 마이닝 에이전트와 패턴 분석 에이전트를 접목하여 더 나은 추천 정보를 제공하기 위한 시스템을 제안한다.

  • PDF

Prediction of Consumer Propensity to Purchase Using Geo-Lifestyle Clustering and Spatiotemporal Data Cube in GIS-Postal Marketing System (GIS-우편 마케팅 시스템에서 Geo-Lifestyle 군집화 및 시공간 데이터 큐브를 이용한 구매.소비 성향 예측)

  • Lee, Heon-Gyu;Choi, Yong-Hoon;Jung, Hoon;Park, Jong-Heung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.4
    • /
    • pp.74-84
    • /
    • 2009
  • GIS based new postal marketing method is presented in this paper with spatiotemporal mining to cope with domestic mail volume decline and to strengthening competitiveness of postal business. Market segmentation technique for socialogy of population and spatiotemporal prediction of consumer propensity to purchase through spatiotemporal multi-dimensional analysis are suggested to provide meaningful and accurate marketing information with customers. Internal postal acceptance & external statistical data of local districts in the Seoul Metropolis are used for the evaluation of geo-lifestyle clustering and spatiotemporal cube mining. Successfully optimal 14 maketing clusters and spatiotemporal patterns are extracted for the prediction of consumer propensity to purchase.

  • PDF

SOM을 이용한 고객의 이탈 가능성 분석 및 이탈 방지 방법론

  • Chae, Gyeong-Hui;Kim, Jae-Gyeong;Song, Hui-Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.694-697
    • /
    • 2004
  • 최근 빠르게 성숙되고 있는 시장과 경쟁적 환경으로 인해 고객 유지에 대한 중요성이 증대되고 있다. 이는 기존 고객을 유지하는 것이 비용 면에서 저렴할 뿐 아니라, 고객 충성도나 구전효과가 같은 기타 부수적인 이득을 획득할 수 있다는 측면에서 유리하기 때문이다. 본 논문은 고객의 이탈 가능성을 미리 예측하고 이를 사전에 방지할 수 있는 고객 유지 절차를 제시하고 있다. 이탈고객의 탐지 및 방지를 위해서는 기존의 인구통계학적 자료 외에도 웹로그, 구매 Database 등의 대용량의 고객 행위 데이터에 대한 분석이 요구되기 때문에 데이터 마이닝 기법의 활용이 필수적이다. 그러나 대부분의 데이터 마이닝 연구는 예측 및 분류의 정확성이 높은 모델을 개발하는데 초점이 맞추어져 있으며, 고객의 행위를 이해하고 바람직한 방향으로 유도하고자 하는 연구는 지극히 부족한 상황이다. 그러므로 본 논문은 다양한 데이터마이닝 기법을 통합하여 잠재 이탈고객을 탐지하고, 기존 연구에서 간과하고 있던 비용적 측면을 고려한 이탈 방지 절차를 제시하고자 한다.

  • PDF