유전 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한 (Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지거나 (2)수학적으로 표현이 불가능하거나 어렵거나 (3) 목적함수에 교란항이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 군집성 분석(cluster analysis)을 이용하여 군집화함으로써 유전 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 그룹화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 최적값에 근접시킬 수 있는 탐색 알고리즘을 제안하였으며, 시뮬레이션의 출력이 특정한 테스트 함수의 형태로 나타난다고 가정한 경우에 확률적으로 나타나는 시뮬레이션 모델의 출력을 최대화하는 문제에 대하여 적용하고 분석하였다.
본 논문에서는 범주형(categorical) 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 fuzzy k-modes 알고리즘은 군집 (cluster)의 중심을 단일값으로 표현한 반면, 제안하는 기법에서는 이를 퍼지값으로 정의한다. 이와 같은 퍼지 중심 표현기법을 도입함으로써 범주형 데이터의 분류시에 발생하는 불확실성을 최소화할 수 있다. 기존의 대표적인 방법들과의 비교실험으로 통해 제안한 방법의 성능을 검증하였다.
본 논문에서는 범주형 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 k-modes 알고리즘과 fuzzy k-modes 알고리즘은 군집의 중심을 단일 값으로 표현하고, 군집에 속하는 데이터의 빈도 수에 기반한 중신 갱신 기법을 사용하였다. 이와 같은 기존의 방법들은 분류의 경계가 모호한 데이트를 군집화할 경우, 알고리즘의 각 단계에서 발생하는 분류의 에러를 보정하지 못해 최종적으로 지역해에 빠지는 단점이 있다. 이를 극복하기 위해 본 논문에서는 군집 중심을 퍼지 집합을 이용하여 정의한다. 퍼지 군집 중심은 주어진 데이터와 군집간의 거리 관계를 퍼지 값을 이용해 표현하며, 각 군집의 중심은 데이터의 소속 정도 값을 이용해 갱신된다. 이와 같은 퍼지 중심 표현기법을 도입하여 범주형 데이터의 분류 시에 보다 세밀한 결정을 내림으로써, 인접한 군집들의 경계에서 발생하는 불확실성을 최소화한다. 기존의 대표적인 방법들과의 비교실험을 수행함으로써 제안한 방법의 성능을 검증하였다.
본 논문은 다자간 환경에서 프라이버시를 보호하는 효율적인 DBSCAN 군집화 기법을 제안한다. 기존 DBSCAN 군집화 기법에 가짜 데이터 삽입을 통한 프라이버시 보호 기법을 적용해 다자간 환경에서 프라이버시를 보호하는 기법으로 확장했다. 기존의 프라이버시를 보호하는 다자간 환경의 군집화 기법들은 비효율적이어서 실제 환경에 적용하기 힘들지만 제안한 기법은 이러한 문제를 해결한 매우 효율적인 기법이다. 본 기법은 다자간 환경뿐만 아니라 비 다자간 환경에도 적용 가능한 효율적인 기법이다.
저자식별은 학술문헌에 출현한 동명저자명들을 실세계의 서로 다른 사람들로 대응시키는 것이다. 이를 위해 임의의 동명저자명쌍의 유사도를 계산하고 이를 바탕으로 동명저자명 개체들을 군집화하는 단계를 거친다. 저자명의 군집화 기법으로 주로 계층적 군집법이 사용되었으나 다양한 계층적 군집법에 대한 비교 평가는 미흡했다. 이 연구는 다이스계수, 코사인유사도, 유클리디안 거리, 자카드계수, 피어슨 상관계수 등의 다양한 개체거리/유사도수식과 계층적 군집법들의 상관관계와 계층적 군집기법들의 한글 저자식별 성능에 대한 비교/분석을 다룬다.
데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.
인터넷 비즈니스나 전자상거래와 연관되어 고객관계관리 (Customer Relationship Management: CRM)가 널리 확산됨으로 해서 군집분석에 대한 관심이 한층 높아졌고, 다양한 군집분석 프로그램이 시장에 소개되어 지고 있다. 그러나, 군집분석 프로그램들은 다른 데이터 분석 기법과는 달리 그들의 정확성을 측정하기가 매우 힘들다. 본 논문에서는 이미 알려져 있는 군집구조를 지닌 인위적 데이터를 사용하여 반복적 군집분석 프로그램 (Convergent Cluster Analysis: CCA)과 보다 전통적인 단순군집 프로그램 (One-Shot Clustering Program: Howard-Harris 프로그램), 그리고 데이터 마이닝 기법 중의 하나인 데모그래픽 군집분실 프로그램의 정확성을 비교하기 위한 현재 진행 중인 연구의 방법론을 제시하는데 그 주요 목적을 두고 있다.
본 논문에서는 커널분류기에 요구되는 다량의 계산량과 자료저장공간을 감소시키도록 고안된 최적군집방법을 적용한 K-평균 가중커널분류기법이 제안되었다. 이 방법은 원래의 훈련표본보다 작은 수의 참고벡터들과 그들의 가중값을 들을 찾아 원래 커널분류 기준을 근사화하여 패턴을 인식하는 것이다. K-평균 가중커널분류기법은 가중파젠윈도우(WPW)분류기법을 개량한 것으로서 참고벡터들을 계산하기 위한 초기 부적절하게 군집된 관측값들을 최적으로 재군집화 함으로써 WPW기법의 단범을 극복하였다. 실제자료들에 제안된 방법을 적용한 결과 WPW분류기법보다 참고벡터들의 대표성과 자료축소면에서 월등히 향상된 결과를 확인하였다
기존의 문서 군집화 기법 NSTC은 문서 군집화 과정 내에서 TF-IDF를 이용하여 문서간 유사도를 측정한다. 본 논문에서는 TF-IDF가 아닌, 공통 Phrase의 관계 그래프를 이용한 새로운 문서간 유사도 측정을 제안한다. 이 방법은 문서 집합 내의 공통 Phrase들의 관계를 나타낸 관계 그래프를 통해 공통 Phrase의 가중치를 부여하는 방법을 제시한다. 또한 실험을 통해 NSTC와 비교하여 본 논문에서 제안한 문서간 유사도 측정 기법이 문서 군집화에 더욱 효과적임을 보였다.
본 논문에서는 Centroidal Voronoi Tessellation을 이용하여 군집로봇의 협조탐색을 위한 공간분할기법을 제안한다. 탐색공간은 Centroidal Voronoi Tessellation을 이용하여 분할한다. 전역 경로 계획 및 군집 로봇 간의 충돌 회피는 포텐셜 필드를 이용한다. 탐색공간에 밀도 함수를 사용하여 공간분할의 유동성을 부여한다. 마지막으로, 군집로봇의 협조탐색의 가능성을 시뮬레이션을 통하여 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.