• Title/Summary/Keyword: 군집 기법

Search Result 1,018, Processing Time 0.028 seconds

UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control (포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계)

  • Han, Ki-Hoon;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • This paper deals with a behavior based decentralized control strategy for UAV swarming utilizing the artificial potential functions and the sliding mode control technique. Individual interactions for swarming behavior are modeled using the artificial potential functions. The motion of individual UAV is directed toward the negative gradient of the combined potential. For tracking the reference trajectory of UAV swarming, a swarming center is considered as the object of control. The sliding-mode control technique is adopted to make the proposed swarm control strategy robust with respect to the system uncertainties and the varying mission environment. Numerical simulation is performed to verify the performance of the proposed controller.

Rarity-Based Saliency Detection (희귀도 기반의 중요도 검출 기법)

  • Lee, Se-Ho;Kim, Jin-Hwan;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.244-245
    • /
    • 2013
  • 본 논문에서는 회귀도 기반의 중요도 검출 기법을 제안한다. 제안하는 기법은 각 군집의 분포 정보를 이용하여 중요도를 검출한다. 우선, 이를 입력 영상에 군집 기법을 수행한다. 그리고 각 군집의 분포를 분석하여 각 군집에 대한 회귀도, 응집도, 그리고 중심밀집도를 추출한다. 마지막으로 회귀도, 응집도, 그리고 중심밀집도를 곱함으로써 중요도를 검출한다. 실험 결과 제안하는 알고리즘이 기존의 기법들 보다 중요도를 정확하게 검출하는 것을 확인할 수 있다.

  • PDF

Comparison of the Cluster Validation Techniques using Gene Expression Data (유전자 발현 자료를 이용한 군집 타당성분석 기법 비교)

  • Jeong, Yun-Kyoung;Baek, Jang-Sun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-76
    • /
    • 2006
  • Several clustering algorithms to analyze gene expression data and cluster validation techniques that assess the quality of their outcomes, have been suggested, but evaluations of these cluster validation techniques have seldom been implemented. In this paper we compared various cluster validity indices for simulation data and real genomic data, and found that Dunn's index is more effective and robust through small simulations and with real gene expression data.

  • PDF

A Study on Fitness Function of Clustering Algorithm based on Genetic Algorithm (유전자 알고리즘을 이용한 군집화 기법의 적합도 함수에 관한 연구)

  • 이수정;권혜련;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.310-312
    • /
    • 2001
  • 최근 관심의 대상이 되고 있는 CRM, eCRM에는 데이터 마이닝 기법이 핵심 기술로 이용되고 있다. 이러한 데이터 마이닝 기법가운데 가장 널리 사용되고 있는 군집화는, 데이터 집합을 유사한 데이터의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 것이다. 그런데 기존의 군집화 알고리즘은 사전에 군집의 개수를 미리 결정해줘야 하고 잡음에 민감하여 지역적 최적해(local minima)에 수렴할 수 있다는 문제점을 가지고 있다. 이러한 문제점의 개선을 위해, 본 논문에서는 유사도 개념을 적합도 함수로 사용하는 유전자 알고리즘을 적용한 군집화 기법을 제안하다. 특히 적합도 하수에 사용된 군집의 대표값 개념은 요약 정보만을 이용하여 계산속도가 향상되기 때문에 대용량 데이터를 다루는 마이닝에 적합할 것을 기대된다.

  • PDF

Application of Cluster Analysis using Mutual Information (상호정보량 기법을 이용한 군집분석의 적용성 연구)

  • Jung, Young-Hun;Kim, Wan-Su;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.414-414
    • /
    • 2011
  • 우리나라 뿐만 아니라 전 세계적으로 기후변화로 인한 집중호우, 폭설 등이 빈번하게 일어나고 있으며 수공구조물 설계에 필요한 확률강우량도 증가하고 있다. 확률강우량을 산정하는 빈도해석의 경우 지점빈도해석의 문제점을 보완한 지역빈도해석에 대한 연구가 꾸준히 진행되고 있다. 지역빈도해석을 적용하기 위해서는 수문학적 동질성을 가지는 지역 구분이 무엇보다 중요하다. 군집 분석은 개체들이 지니고 있는 다양한 속성의 유사성을 동질적인 집단으로 군집화하는 방법을 말한다. 군집분석의 기본원리는 분석하고자 하는 여러 특성등을 유사성(similaruty) 거리(distance)로 환산하고 거리가 상대적으로 가까운 개체들을 동질적으로 군집화하는 것이다. 군집분석을 적용하기 위해서는 기상학적 인자와 지형학적 인자를 이용하여 군집분석을 실시한다. 군집분석을 실시할 때 가장 중요한 것은 입력변수의 선택으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 준다. 상호정보량(Mutual Information, MI) 기법은 두 무작위 변수간의 관련성을 측정하는 방법이며 (Cover and Tomas, 2006), 두 변수간의 독립성 구조에 관한 가정이 없고 데이터 변형이나 잡음(noise)에 대한 영향이 적어 다른 기법보다 신뢰도가 높다고 알려져 있다(Peng et al., 2005). 본 연구에서는 상호정보량 기법을 이용하여 군집된 지점들의 종속성과 독립성의 관계를 정량적으로 산정하여 비교하고자 한다.

  • PDF

Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm (붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정)

  • 박민재;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.263-266
    • /
    • 2002
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.

The Analysis of Optimal Cluster Number of Precipitation Region with Dunn Index (Dunn 지수를 이용한 최적 강수지역 군집수 분석)

  • Um, Myoung-Jin;Jeong, Chang-Sam;Nam, Woo-Sung;Jung, Young-Hun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.87-91
    • /
    • 2011
  • 강수는 지역에 따라 발생양상이 매우 다른 자연현상 중 하나이다. 이러한 강수를 효과적으로 분석하여 확률강수량을 산정하기위해서 수문학에서는 다양한 방법이 시도되어 왔다. 우리나라에서는 지점빈도해석을 통한 확률강수량을 주로 사용해왔으나 최근 들어 Hosking and Wallis(1997)가 제안한 지역빈도해석을 활용을 적극 도모 하고 있는 중이다. 이러한 지역빈도해석 기법은 지점빈도해석 기법에 비하여 한정된 강수자료를 활용하는 측면 등 여러 가지 장점을 가진 확률 강수량 산정방법이다. 그러나 이 기법을 적용하여 확률강수량을 산정하기 위해서는 강수의 지역구분을 먼저 수행하여야 한다. 강수지역의 구분을 위해서는 여러 가지 기법이 존재하나 최근에는 Cluster 기법 중 K-means 방법이나 Fuzzy c-means 방법 등을 주로 적용하여 지역구분을 수행하고 있다. 그러나 K-means 방법이나 Fuzzy c-means 방법 등은 산정 방법내에서 최적 군집수를 결정할 수 있는 알고리즘이 없기 때문에 임의적으로 최적 군집수를 결정하여야 한다. 본 연구에서는 이러한 단점을 극복하기 위하여 Cluster 평가지수 중 하나인 Dunn 지수를 이용하여 최적 군집수를 제시하고자 한다. 본 연구에서 강수지역을 구분하기 위하여 적용한 인자는 월 평균 강수량, 연 평균 강수량, 월 최대 강수량, 경도, 위도, 고도 등이며, 이를 K-means, PAM 및 친근도 전파 기법을 통하여 강수지역을 구분하였다. 적정 군집수를 임의적으로 증가시켜 가면서 Dunn 지수를 산정하였다. 산정된 결과를 통하여 최적 군집수를 결정하였다.

  • PDF

Automatic word clustering using total divergence to the average (평균점에 대한 불일치의 합을 이용한 자동 단어 군집화)

  • Lee, Ho;Seo, Hee-Chul;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.419-424
    • /
    • 1998
  • 본 논문에서는 단어들의 분포적 특성을 이용하여 자동으로 단어를 군집화(clustering) 하는 기법을 제시한다. 제안된 군집화 기법에서는 단어들 사이의 거리(distance)를 가상 공간상에 있는 두 단어의 평균점에 대한 불일치의 합(total divergence to the average)으로 측정하며 군집화 알고리즘으로는 최소 신장 트리(minimal spanning tree)를 이용한다. 본 논문에서는 이 기법에 대해 두 가지 실험을 수행한다. 첫 번째 실험은 코퍼스에서 상위 출현 빈도를 가지는 약 1,200 개의 명사들을 의미에 따라 군집화 하는 것이며 두 번째 실험은 이 논문에서 제시한 자동 군집화 방법의 성능을 객관적으로 평가하기 위한 것으로 가상 단어(pseudo word)에 대한 군집화이다. 실험 결과 이 방법은 가상 단어에 대해 약 91%의 군집화 정확도와(clustering precision)와 약 81%의 군집 순수도(cluster purity)를 나타내었다. 한편 두 번째 실험에서는 평균점에 대한 불일치의 합을 이용한 거리 측정에서 나타나는 문제점을 보완한 거리 측정 방법을 제시하였으며 이를 이용하여 가상 단어 군집화를 수행한 결과 군집화 정확도와 군집 순수도가 각각 약 96% 및 95%로 향상되었다.

  • PDF

Cluster Merging Using Density based Fuzzy C-Means algorithm (밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • 한진우;전성해;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.235-238
    • /
    • 2003
  • Fuzzy C-Means(FCM) 알고리즘은 초기 군집 중심의 개수와 위치에 따라 군집 결과의 성능차이가 많이 나타난다. 하지만 일반적인 경우에 군집 중심의 개수는 분석가의 주관에 의해 결정되고, 임의적으로 결정되기 때문에 원래 데이터의 구조와는 무관하게 수행되어 최적화된 군집화 수행을 실행하지 못하는 경우가 발생하게 된다. 따라서 본 논문에서는 원래의 데이터의 구조에 좀더 근접한 퍼지 군집화를 수행하기 위하여 격자를 바탕으로 한 데이터의 밀도를 이용한 FCM을 제안하고, 이러한 밀도 기반 FCM에 의해 결정된 군집의 합병 기법을 제안하였다. N-차원의 데이터 공간을 N-차원의 격자로 나누고, 초기 군집 중심의 개수와 위치는 각 격자의 밀도를 바탕으로 결정된다. 초기화 이후에 각 격자 내부에서 FCM을 이용하여 군집화를 수행하고, 계속해서 이웃 격자의 군집결과에 대하여 군집간의 유사도 측도를 이용하여 군집 합병을 수행함으로써 데이터의 자연적인 구조에 근접한 군집화를 수행하였다. 제안된 군집화 합병 기법의 향상된 성능은 UCI Machine Learning Repository 데이터를 이용하여 확인하였다.

  • PDF

Cluster-based keyword Ranking Technique (클러스터 기반 키워드 랭킹 기법)

  • Yoo, Han-mook;Kim, Han-joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.529-532
    • /
    • 2016
  • 본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 ClusterTextRank 기법을 제안한다. 제안 기법은 k-means 군집화 알고리즘을 이용하여 문서들을 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최소신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 13% 가량 개선됨을 보인다.