희귀도 기반의 중요도 검출 기법
 이세호 김진환 김창수 고려대학교

\{seholee, jinhwankim, cskim\}@mcl.korea.ac.kr
Rarity-Based Saliency Detection

Se-Ho Lee Jin-Hwan Kim Chang-Su Kim
Korea University

요약

본 논문에서는 희귀도 기반의 중요도 검출 기법을 제안한다. 제안하는 기법은 각 군집의 분포 정보를 이용하여 중요도를 검출한다. 우선, 이를 위해 입력 영상에 군집 기법을 수행한다. 그리고 각 군집의 분포를 분석하여 각 군집에 대한 희귀도, 응집도, 그리고 중심밀집도를 추출한다. 마지막으로 희귀도, 응집도, 그리고 중심밀집도를 곱함으로써 중요도를 검출한다. 실 험 결과 제안하는 알고리즘이 기존의 기법들 보다 중요도를 정확하게 검출하는 것을 확인할 수 있다.

1. 서론

중요도 검출 기법(saliency detection)은 인간의 시각 인지 특성에 근거하여 관심 영역을 자동적으로 추출하는 기법이다. 중요도 검출 기 법은 물체 감지, 콘텐츠를 보존하며 영상의 크기를 조절하는 영상 리타 겟팅의 전처리 알고리즘으로 이용하는 등 다양한 분야에서 응용을 하 여 활발히 연구되고 있다.

기존의 기법으로는 주위와의 특징 차이를 이용한 Itti의 방법 [1], 그래프를 이용한 방식인 GBVS 기법 [2], RWR 기법 [3] 등이 있다. Itti의 방법은 주위 영역과 다른 특징을 가지는 영역을 중요 영역으로 가정한다. 특징으로는 색상, 밝기, 그리고 방향 등을 이용하였으며 주 변 영역과의 특징 차이를 계산하여 중요도를 검출하였다. GBVS 기법, RWR 기법은 랜덤 워크(random walk)를 이용한 방법이다. 각 노드의 중요도는 랜덤 워커(random walker)가 그 노드를 방문하는 횟수에 따 라 결정된다. GBVS 기법은 두 그래프의 두 노드(node)를 연결하는 선 (edge)에 대하여 특징 차이에 비례하는 가중치를 두고 이 가중치에 따 라 얻어지는 각 노드의 방문 횟수를 계산하여 중요도를 검출한다. RWR 기법은 GBVS 기법을 다중 스케일로 확장한 기법이다. GBVS 기법은 큰 객체의 내부 영역을 중요 영역으로 검출하지 못하는 문제가 있으므로 RWR ${ }^{1}$) 기법에서는 이전 스케일의 정지 분포(stationary distribution)를 재시작 분포로 이용하여 중요도를 검출하였다.

Itti의 방법은 GBVS 기법과 같이 큰 객체의 내부 영역을 검출하지 못하는 문제가 있다. 또한 GBVS 기법, RWR 기법은 각 노드의 방문 횟수를 구하기 위하여 반복적인 알고리즘을 수행해야 하므로 연산의 복잡도가 높다. 이에, 본 논문에서는 희귀도 기반의 중요도 검출 기법 을 제안한다. 희귀도는 특정 색상 또는 밝기가 영상 내에 얼마나 희소 하게 분포하는지를 나타내며 인간의 인지 특성상 희귀한 색상 또는 밝

[^0]기를 가진 영역에 주목하기 때문에 희귀한 색상 또는 밝기를 가진 영 역을 검출함으로써 중요도를 추출할 수 있다.

본 논문의 구성은 다음과 같다. 2 절에서는 제안하는 기법을 설명 하고, 3 절에서는 제안하는 기법을 적용한 실험 결과를 확인한다. 마지 막으로 4 절에서는 결론을 맺는다.

2. 제안하는 기법

제안하는 기법은 입력 영상에 군집 기법(clustering)을 수행한 뒤, 각 군집(cluster)의 분포를 고려하여 중요도를 검출한다. 중요도는 각 군집의 희귀도와 응집도, 그리고 중심밀집도를 이용하여 획득한다.

우선, K -평균 알고리즘을 이용하여 군집화를 수행한다. CIELab 색공간에 대하여 K -평균 알고리즘을 수행하면 K 개의 군집의 분포도 를 획득할 수 있다.

군집 C_{k} 의 희귀도 R_{k} 는 C_{k} 가 영상 내에서 얼마나 희소하게 분 포하는 지를 나타낸다. C_{k} 를 구성하는 픽셀 수가 작을수록 희귀도가 높은 군집이라고 할 수 있다. 이 때, C_{k} 뿐만 아니라 C_{k} 와 유사한 색 상을 가지는 군집의 분포 또한 고려하여 희귀도를 추출한다. C_{i} 와 C_{j} 간의 색상 유사도 $s\left(C_{i}, C_{j}\right)$ 는 다음과 같이 얻는다.

$$
\begin{equation*}
s\left(C_{i}, C_{j}\right)=\exp \left(-\frac{C_{i} \ominus C_{j}}{\sigma_{\mathrm{s}}^{2}}\right), \tag{1}
\end{equation*}
$$

여기에서 $C_{i} \ominus C_{j}$ 는 C_{i} 와 C_{j} 간의 평균 색상 차이를 의미한다. σ_{s}^{2} 는 색상 차이의 민감도를 결정하며 0.1 의 값을 사용하였다. $s\left(C_{i}, C_{j}\right)$ 는 C_{i} 와 C_{j} 가 유사할수록 높은 값을 가지고 유사하지 않 을수록 낮은 값을 가진다. h_{k} 는 C_{k} 가 영상에 얼마나 많이 분포하는 지를 의미하며 이는 C_{k} 를 이루는 픽셀 수와 같다. C_{k} 뿐만 아니라
C_{k} 와 유사한 색상을 가지는 군집을 고려하여 \hat{h}_{k} 를 갱신한다.

$$
\begin{equation*}
\hat{h}_{k}=\sum_{n=1}^{K}\left(h_{n} \cdot s\left(C_{k}, C_{n}\right)\right) \tag{2}
\end{equation*}
$$

\hat{h}_{k} 가 작을수록 C_{k} 의 색상과 유사한 색상이 영상 내에 희소하게 분포하므로 C_{k} 의 희귀도 R_{k} 는 다음과 같이 계산한다.

$$
\begin{equation*}
R_{k}=\exp \left(-\frac{\hat{h}_{k}}{\sigma_{r}^{2} \sum_{n=1}^{K} \hat{h}_{n}}\right) \tag{3}
\end{equation*}
$$

여기에서 σ_{r}^{2} 는 R_{k} 의 민감도를 결정하며 실험에서는 0.01 의 값을 이용하였다.
C_{k} 의 응집도 O_{k} 는 각 군집의 분포가 얼마나 몰려 있는 지를 나 타낸다. 중요한 물체는 조밀하게 분포하는 경향이 있으므로 군집의 분 포가 조밀할수록 C_{k} 는 중요한 군집이라 할 수 있다. O_{k} 는 C_{k} 의 중 심 위치 μ_{k} 로부터 C_{k} 에 속하는 픽셀들의 평균 거리 $d\left(C_{k}, \mu_{k}\right)$ 를 이용하여 계산한다. C_{k} 의 응집도 O_{k} 는 아래와 같다.

$$
\begin{equation*}
O_{k}=\exp \left(-\frac{d\left(C_{k}, \mu_{k}\right)}{\sigma_{o}^{2} \cdot D}\right) \tag{4}
\end{equation*}
$$

여기에서 D 는 영상의 대각선 길이를 의미하며 σ_{o}^{2} 은 O_{k} 의 민감도를 결정하며 0.2 의 값을 이용한다.
C_{k} 의 중심밀집도 P_{k} 는 C_{k} 와 영상의 중심과의 분산을 의미한다. 영상 촬영 시 영상의 중심에 중요한 물체가 포함되도록 하는 경향이 있으므로 영상의 중심 μ_{0} 에 위치하는 군집일수록 중요한 군집이라 할 수 있다. O_{k} 를 구할 때와 유사한 방법으로 영상 중심과의 평균 거리 $d\left(C_{k}, \mu_{0}\right)$ 를 이용하여 계산한다.

$$
\begin{equation*}
P_{k}=\exp \left(-\frac{d\left(C_{k}, \mu_{0}\right)}{\sigma_{p}^{2} \cdot D}\right) \tag{5}
\end{equation*}
$$

여기에서 σ_{p}^{2} 은 P_{k} 의 민감도를 결정하며 0.5 의 값을 이용하였다.
C_{k} 의 중요도 S_{k} 는 다음과 같이 희귀도와 응집도, 그리고 중심밀 집도의 곱으로 계산한다.

$$
\begin{equation*}
S_{k}=R_{k} \cdot O_{k} \cdot P_{k} \tag{6}
\end{equation*}
$$

3. 실험 결과

그림 1는 제안하는 기법을 적용한 결과를 나타낸 것이다. 실험 데 이터로는 MSRA 데이터셋 [4]을 이용하였고, 실험 결과는 GBVS 기법 [2]과 RWR 기법 [3]을 적용한 결과와 비교하였다. GBVS 기법은 객체 가 큰 경우 객체의 내부 영역을 중요 영역으로 검출하지 못하는 문제 가 있고, RWR 기법은 중요 영역을 실제 중요 영역보다 크게 검출하는 경향이 있다. 반면, 제안하는 기법은 중요 영역을 기존의 기법들보다 정확하게 인식하는 것을 확인할 수 있다. 예를 들어, 그림 1 의 첫 번째 행의 영상에 대한 결과에서 GBVS 기법은 단풍잎의 경계 영역만을 중 요 영역으로 검출하며, RSR 기법은 단풍잎뿐만 아니라 배경 영역까지 중요 영역으로 검출한다, 반면, 제안하는 알고리즘은 단풍잎을 정확하 게 검출하는 것을 확인할 수 있다.

그림 1. 실험 결과, (a) 원본 영상, (b) GBVS 기법을 적용한 결과, (c) RWR 기법을 적용한 결과, (d) 제안하는 기법을 적용한 결과

4. 결론

본 논문에서는 희귀도 기반의 중요도 검출 기법을 제안하였다. 제 안하는 기법은 영상을 군집화한 후 각 군집의 분포 정보를 이용하여 중요도를 검출하였다. 실험 결과 GBVS 기법과 RWR 기법에 비해 제 안하는 기법이 중요도를 정확하게 검출하는 것을 확인할 수 있었다.

5. 참고문헌

[1] L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Trans. Pattern Anal. Mach. Intel., vol. 20, no. 11, pp. 1254-1259, Nov 1998.
[2] J. Harel, C. Koch, and P. Perona, "Graph-based visual saliency," in NIPS, vol. 19, pp. 545-552, 2007.
[3] J.-S. Kim, J.-Y. Sim, and C.-S. Kim, "Multiscale saliency detection using random walk with restart," to appear in IEEE Trans. Circuit. Sys. Video Technol., 2013.
[4] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum, "Learning to detect a salient object," in Proc. IEEE CVPR, pp. 1-8, 2007.

[^0]: *이 논문은 2013년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원 (No.2009-0083495) 및 2013 년도 삼성전자의 지원을 받아 수행된 연구임.

