• 제목/요약/키워드: 군집화 기법

검색결과 501건 처리시간 0.029초

유전 알고리즘과 군집 분석을 이용한 확률적 시뮬레이션 최적화 기법

  • 이동훈
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.62-64
    • /
    • 1998
  • 유전 알고리즘은 전통적인 등반 알고리즘을 이용하여 구하기 어려웠던 최적화 문제를 해결하기 위한 강인한 (Robust) 탐색 기법이다. 특히 목적함수가 (1)여러 개의 국부 최대치를 가지거나 (2)수학적으로 표현이 불가능하거나 어렵거나 (3) 목적함수에 교란항이 섞여 있을 경우도 우수한 탐색 능력을 갖는 것으로 알려져 있다. 본 논문에서는 군집성 분석(cluster analysis)을 이용하여 군집화함으로써 유전 알고리즘을 이용하여 나타나는 다양한 해집합을 형성하는 개체군을 그룹화하고, 각 군집에 부여된 군집 적합도에 따라서 최적해를 구함으로써 최적값에 근접시킬 수 있는 탐색 알고리즘을 제안하였으며, 시뮬레이션의 출력이 특정한 테스트 함수의 형태로 나타난다고 가정한 경우에 확률적으로 나타나는 시뮬레이션 모델의 출력을 최대화하는 문제에 대하여 적용하고 분석하였다.

  • PDF

GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법 (Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification)

  • 조규철;마용범;이종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.167-175
    • /
    • 2007
  • 퍼지이론은 생명정보공학에서 지식을 표현하는데 활용되고 제어시스템 모델을 이해하는데 활용되어 왔다. 본 논문에서는 생명정보학의 응용 프로그램에서 중요한 데이터 분류에 초점을 맞추었다. 최적의 임계값 유도를 위한 GPCR 분류에서 기존의 순차기반 임계값 제어기법은 임계값 결정범위와 최적의 임계값 유도 시간의 문제점을 보였고, 이진기반 임계값 제어기법은 임계값 결정 초기에 시스템의 안정성에 대한 단점이 있었다. 이를 보완하기 위해 우리는 ART1 군집화를 위한 퍼지기반 임계값제어기법을 제안한다. 제안된 방법의 성능을 평가하기 위해 ART1 군집화를 위한 퍼지기반 임계값 제어기법을 구현하여 기존의 순차기반 임계값 제어기법과 이진기반 임계값 제어기법과의 인식률에 대한 구동시간의 변화, 임계값의 변화에 따른 시스템의 구동시간을 측정하였다. 퍼지기반 임계값제어 기법은 GPCR 데이터 분류에서 인식률과 구동시간에 대한 정보를 통해 분류 임계값을 조정하여 높은 인식률과 낮은 구동시간을 지속적으로 유도하여 안정적이고 효과적인 분류 시스템을 만들 수 있었다.

  • PDF

한글 저자명 군집화를 위한 계층적 기법 비교 (Exploration of Hierarchical Techniques for Clustering Korean Author Names)

  • 강인수
    • 정보관리연구
    • /
    • 제40권2호
    • /
    • pp.95-115
    • /
    • 2009
  • 저자식별은 학술문헌에 출현한 동명저자명들을 실세계의 서로 다른 사람들로 대응시키는 것이다. 이를 위해 임의의 동명저자명쌍의 유사도를 계산하고 이를 바탕으로 동명저자명 개체들을 군집화하는 단계를 거친다. 저자명의 군집화 기법으로 주로 계층적 군집법이 사용되었으나 다양한 계층적 군집법에 대한 비교 평가는 미흡했다. 이 연구는 다이스계수, 코사인유사도, 유클리디안 거리, 자카드계수, 피어슨 상관계수 등의 다양한 개체거리/유사도수식과 계층적 군집법들의 상관관계와 계층적 군집기법들의 한글 저자식별 성능에 대한 비교/분석을 다룬다.

인공지능을 활용한 합류부에서 수질의 공간혼합 특성 분석 (Analysis of spatial mixing characteristics of water quality at the confluence using artificial intelligence)

  • 이서경;김동수;김경동;김영도;류시완
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.482-482
    • /
    • 2022
  • 하천의 합류부에서는 수질이 다른 유체가 혼합하여 합류 전과 다른 특성을 보인다. 하천의 합류부에서 수질을 효율적으로 관리하기 위해서는 수질의 공간적인 혼합 특성을 규명하는 것이 중요하다. 합류부에서 수질의 공간적인 혼합 특성을 분석하기 위해 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기 조직화 지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하였다. 세 가지 기법을 비교하여 어떤 알고리즘이 합류부의 수질 변화 특성을 더 뚜렷하게 나타내는지 분석하였다. 수질 변화 비교 인자들은 pH, chlorophyll, DO, Turbidity 등이 있고, 수질 인자들은 YSI를 활용해 측정하였다. 자료의 측정 지역은 낙동강과 황강이 합류하는 지역이며, 보트에 YSI 장비를 부착하고 횡단하여 측정하였다. 측정한 데이터를 R 프로그램을 통해 세 가지 기법을 적용시켜 수질 변화 비교를 분석한다. 토폴로지 데이터 분석(topological data analysis, TDA)은 거대하고 복잡한 데이터로부터 유의미한 정보를 추출하는 데 사용하고, 자기조직화지도(Self-Organizing Map, SOM) 기법은 차원 축소와 군집화를 동시에 수행한다. k-평균 알고리즘(K-means clustering algorithm) 기법은 주어진 데이터를 k개의 클러스터로 묶는 머신러닝 비지도학습에 속하는 알고리즘이다. 세 가지 방법들의 주목적은 클러스터링이다. 클러스터 분석(Cluster analysis)이란 주어진 데이터들의 특성을 고려해 동일한 성격을 가진 여러 개의 그룹으로 대상을 분류하는 데이터 마이닝의 한 방법이다. 군집화 방법들인 TDA, SOM, K-means를 이용해 합류 지역의 수질 특성들을 클러스터링하여 수질 패턴들을 분석해 하천 수질 오염을 방지할 수 있을 것이다. 본 연구에서는 토폴로지 데이터 분석(topological data analysis, TDA), 자기조직화지도(Self-Organizing Map, SOM), k-평균 알고리즘(K-means clustering algorithm) 세 가지 기법을 이용하여 합류부에서의 수질 특성을 비교하며 어떤 기법이 합류의 특성을 더욱 뚜렷하게 나타내는지 규명했다. 합류의 특성을 군집화 방법을 이용해 알게 된다면, 합류부의 수질 변화 패턴을 다른 합류 지역에서도 적용할 수 있을 것으로 기대된다.

  • PDF

해시 색인 군집화 기반 스카이라인 질의 (Clustered Hash Index-based Skyline Query)

  • 최종혁;나스리디노프 아지즈
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2018년도 동계학술대회
    • /
    • pp.45-48
    • /
    • 2018
  • 스카이라인 질의는 지배라는 개념을 활용, 주어진 데이터로부터 데이터를 대표할 수 있는 데이터들을 탐색하기 때문에 사용자의 요청에 부합하는 최적의 결과를 탐색하거나 기업에서 의사결정을 이루기 위해 사용되는 등 넓은 활용을 보이고 있다. 하지만 스카이라인 질의는 데이터의 차원이 증가하는 경우 전체적인 성능의 감소와 함께 스카이라인으로 선택되는 데이터의 수가 급증하여 사용자에게 유용한 결과를 반환하지 못하게 된다. 이러한 문제를 해결하기 위해 최근에는 Top-k 질의 기반의 방식이나 군집화 기반의 기법을 적용한 방식의 스카이라인 질의들이 새롭게 제안되고 있지만 이들은 데이터의 편향이나 사용자로부터 입력된 k에 큰 영향을 받는 등 해당 질의 결과가 데이터들을 충분히 대표하거나 다양성을 만족시키지 못했다. 이러한 문제를 해결하기 위해 본 논문에서는 해시 색인 기법과 군집화 기법인 DBSCAN을 통해 주어진 데이터들을 충분히 대표함과 동시에 다양성을 만족할 수 있는 새로운 방식의 스카이라인인 CHI-SQ의 이론적 배경을 제안하고자 한다.

  • PDF

군집화를 이용한 하이브리드 기반 채용검색 랭킹 기법 (Recruiting Ranking Techniques Based on Hybrid Using Clustering)

  • 조보연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1587-1590
    • /
    • 2012
  • 인터넷의 활용이 보편화 됨에 따라 정보의 양은 급격히 늘어나고 있다. 이에 취업을 희망하는 구직자의 경우 IR 로부터 원하는 정보를 검색하기 위해 과거보다 더 많은 시간과 노력이 필요하게 되었다. 이에 본 논문에서는 TF(Term Frequency)기법을 통해 문서를 추출하고 추출된 문서의 Doc_ID 빈도수를 기준으로 한 내용기반과 군집기법을 혼합한 하이브리드 검색 시스템을 제안한다. 구직자들이 클릭한 취업정보들의 링크번호들을 K-means 알고리즘을 이용하여 군집화를 한다. 생성된 군집들은 각기 하나의 문서로 가정하고, 기존 문서과 더불어 검색 주제와 연관성을 갖고 있는 문서들을 동적비율로 검색 랭킹 하는 방식이다. 기존의 IR 기술과의 비교 실험을 통해 성능을 평가하였다. 실험결과 본 논문에서 제안한 방법이 기존의 방법보다 우수함을 확인할 수 있었다

단세포 RNA 시퀀싱 데이터를 위한 가중변수 스펙트럼 군집화 기법 (One-step spectral clustering of weighted variables on single-cell RNA-sequencing data)

  • 박민영;박세영
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.511-526
    • /
    • 2020
  • 단세포 RNA 시퀀싱 데이터(single-cell RNA-sequencing data, 이하 단세포 RNA 데이터)는 세포 조직으로부터 추출한 각 단세포 별 유전자의 신호를 기록한 데이터로, 세포 간의 이질성을 파악하는 것을 주요 목적으로 한다. 그러나 단세포 RNA 데이터는 샘플링 및 기술적인 한계로 인해 결측비율이 높고, 노이즈가 크다. 이러한 이유 때문에 기존의 군집화 방법을 적용하는 데에 한계가 존재한다. 본 논문에서는 단세포 RNA 데이터 분석에서 모티브를 얻어 스펙트럼 군집화(spectral clustering) 기반의 방법을 제안한다. 특히 유사도 행렬(similarity matrix) 계산에서 유전자 별로 가중치를 부여하여 기존의 단세포 데이터 분석 방법과 차별화하였다. 제안하는 군집화 방법은 유전자별 가중치를 부여함과 동시에 세포를 군집화한다. 군집화는 반복 알고리즘을 통해 제안하는 비볼록식(non-convex optimization)을 풀어 진행한다. 또한 실데이터 적용과 시뮬레이션을 통해 제안하는 군집화 방법이 기존의 방법보다 군집을 잘 구분하는 것을 보인다.

상호정보량 기법을 이용한 군집분석의 적용성 연구 (Application of Cluster Analysis using Mutual Information)

  • 정영훈;김완수;정창삼;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.414-414
    • /
    • 2011
  • 우리나라 뿐만 아니라 전 세계적으로 기후변화로 인한 집중호우, 폭설 등이 빈번하게 일어나고 있으며 수공구조물 설계에 필요한 확률강우량도 증가하고 있다. 확률강우량을 산정하는 빈도해석의 경우 지점빈도해석의 문제점을 보완한 지역빈도해석에 대한 연구가 꾸준히 진행되고 있다. 지역빈도해석을 적용하기 위해서는 수문학적 동질성을 가지는 지역 구분이 무엇보다 중요하다. 군집 분석은 개체들이 지니고 있는 다양한 속성의 유사성을 동질적인 집단으로 군집화하는 방법을 말한다. 군집분석의 기본원리는 분석하고자 하는 여러 특성등을 유사성(similaruty) 거리(distance)로 환산하고 거리가 상대적으로 가까운 개체들을 동질적으로 군집화하는 것이다. 군집분석을 적용하기 위해서는 기상학적 인자와 지형학적 인자를 이용하여 군집분석을 실시한다. 군집분석을 실시할 때 가장 중요한 것은 입력변수의 선택으로 입력 변수의 적절한 선택이 결과값에 큰 영향을 준다. 상호정보량(Mutual Information, MI) 기법은 두 무작위 변수간의 관련성을 측정하는 방법이며 (Cover and Tomas, 2006), 두 변수간의 독립성 구조에 관한 가정이 없고 데이터 변형이나 잡음(noise)에 대한 영향이 적어 다른 기법보다 신뢰도가 높다고 알려져 있다(Peng et al., 2005). 본 연구에서는 상호정보량 기법을 이용하여 군집된 지점들의 종속성과 독립성의 관계를 정량적으로 산정하여 비교하고자 한다.

  • PDF

k-평균 군집화 기법을 활용한 SNS의 부적절한 광고성 콘텐츠 탐지 (Detection of inappropriate advertising content on SNS using k-means clustering technique)

  • 이동환;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.570-573
    • /
    • 2021
  • 오늘날 SNS를 사용하는 사람들이 증가함에 따라, 생성되는 데이터도 많아지고 종류도 매우 다양해졌다. 하지만 유익한 정보만 존재하는 것이 아니라, 부정적, 반사회적, 사행성 등의 부적절한 콘텐츠가 공존한다. 때문에 사용자에 따라 적절한 콘텐츠를 필터링 할 필요성이 증가하고 있다. 따라서 본 연구에서는 SNS Instagram을 대상으로 콘텐츠의 해시태그를 수집하여 데이터화 했다. 또한 k-평균 군집화 기법을 적용하여, 유사한 특성의 콘텐츠들을 군집화하고, 각 군집은 실루엣 계수(Silhouette Coefficient)와 키워드 다양성(Keyword Diversity)을 계산하여 콘텐츠의 적절성을 판단하였다.

명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할 (Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification)

  • 김민정;이정민;김명희
    • 정보처리학회논문지A
    • /
    • 제13A권5호
    • /
    • pp.465-472
    • /
    • 2006
  • 최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영상을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다. 본 연구에스는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링(coherence enhancing diffusiion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가긍하고 사용자 수동후 처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.