데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.
본 연구의 목적은 유사 블로그 추천 시스템을 통해서 특정 주제의 유사도에 따라 주제를 찾아 주는 것이다. 유사 추천 시스템을 실현하기 위해서는 대규모 데이터 집합에서 유사항목을 가진 그룹을 찾을 수 있도록 군집해야 한다. 군집화(clustering) 기법은 군집하고자 하는 목적에 따라 적합한 기법과 군집수가 결정되어야 한다. 군집기법으로는 가장 많이 사용되는 K-means 알고리즘을 사용 하였고 추천 알고리즘은 흰개미 군집 알고리즘을 사용하였다. 흰개미 습성 모델을 이용한 군집화 기법은 K-means 알고리즘이 갖고 있는 적절한 군집 갯수 문제점을 해결하고, 군집화 시간을 단축하며, 군집을 위한 군집 평균 이동횟수를 개선한다.
본 논문에서는 범주형(categorical) 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 fuzzy k-modes 알고리즘은 군집 (cluster)의 중심을 단일값으로 표현한 반면, 제안하는 기법에서는 이를 퍼지값으로 정의한다. 이와 같은 퍼지 중심 표현기법을 도입함으로써 범주형 데이터의 분류시에 발생하는 불확실성을 최소화할 수 있다. 기존의 대표적인 방법들과의 비교실험으로 통해 제안한 방법의 성능을 검증하였다.
현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.
검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.
본 연구는 서로 다른 조건에서 질산화를 유도한 반응기의 군집동태를 살피기 위해 RAPD, ARDRA, DGGE와 같은 기법들을 적용시켜 반응기 초기의 슬러지 구성 군집의 상태 와 질산화 유도후의 군집 변화를 살펴보고자 하였다. 결과적으로 1.5 kb정도의 165 rDNA를 이용한 RAPD와 ARDRA에서는 RAPD에 의한 군집 Patterns변화가 훨씬 다양했으며, 250 bP정도의 PCR산물로 분리를 시도한 DGGE에서도 비교적 예상했던 바와 같이 군집이 단순화되는 양상을 볼 수 있었다.
XML은 데이터 교환과 정보 관리에 점차 중요해지고 있다. 근래에 XML 문서들에 대한 접근, 질의, 저장을 위한 효율적인 기법들을 개발하기 위해 많은 노력들이 이루어지고 있다. 이 논문에서 우리는 XML 문서들을 효율적으로 군집화하는 새로운 방법을 제안한다. XML 문서의 특징을 위해 XML 문서의 구조와 내용을 대표할 수 있는 새로운 대표 경로, 즉 가상 경로가 제안된다. XML 문서들을 군집화하기 위해 잘 알려진 계층 군집화 기법들을 대표 경로들에 적용하기 위한 방법도 제안된다. 실험을 통해 XML 문서의 특징으로 가상 경로를 사용했을 때 실제적인 군집들이 촘촘한 형상으로 잘 형성됨을 알 수 있다.
본 논문은 고차원의 범주형 데이터에 대한 군집화에 대해서 다룬다. 기존의 범주형 데이터 객체를 위한 유사성(상이성) 계측들의 기저에 깔려 있는 한계점은 수치형 데이터에서와 같은 순서화 (ordering)의 부재와 데이터의 고차원성과 희소성에 기인하는데, 이를 효과적으로 극복할 수 있는 기법이 투영 군집화이다. 본 논문에서는 고차원의 범주형 데이터를 효과적으로 처리할 수 있는 투영 군집화를 다루며 핵심 요소인 군집 차원의 정의와 군집 응집도를 제안한다.
컴퓨터 학습의 군집화는 주어진 데이터를 서로 유사한 몇 개의 집단으로 묶는 작업을 수행한다. 군집화를 위한 유사도 결정을 위한 측도는 많은 기법들에서 매우 다양한 측도들이 사용되고 또한 연구되어 왔다. 하지만 군집화의 결과에 대한 성능측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고 애매한 경우가 많다. 퍼지 군집화는 이러한 애매한 군집화 문제에 있어서 융통성 있는 군집 결정 방안을 제시해 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 베이지안 학습을 통하여 군집화를 위한 퍼지 멤버 함수값을 구하였다. 본 연구에서는 최적의 퍼지 군집화 수행을 위하여 베이지안 학습 기반의 퍼지 규칙을 추출하였다. 인공적으로 만든 데이터와 기존의 기계 학습 데이터를 이용한 실험을 통하여 제안 방법의 성능을 확인하였다.
데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.