• 제목/요약/키워드: 군집화 기법

검색결과 501건 처리시간 0.027초

데이터 마이닝의 능률적인 군집화를 위한 유전자 알고리즘 적용에 관한 연구 (A Study on Gene Algorithm Application for Efficient Clustring of Data Mining)

  • 최호진;홍성표
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.41-44
    • /
    • 2009
  • 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고, 군집들간의 유사성을 최소화 시키도록 데이터의 집합을 분할하는 것이다. 대용량의 데이터베이스에서 최적의 효율화를 내기 위해서는 원시데이터에 대한 접근 횟수를 줄이고, 이것을 알고리즘 적용 대상이 데이터 구조의 크기를 줄이는 군집화 기법에 많은 관심이 보이고 있다. 본 논문에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 군집화 알고리즘을 제안하는 적합도 함수는 보다 양질의 군집을 찾아내는 것으로 평가 되었다. 또한 유전자 알고리즘 중 8가지를 세부 분석하여 평가하였다.

  • PDF

흰개미 군집 알고리즘을 이용한 유사 블로그 추천 시스템에 관한 연구 (A Study of Similar Blog Recommendation System Using Termite Colony Algorithm)

  • 정기성;조이석;이말례
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.83-88
    • /
    • 2013
  • 본 연구의 목적은 유사 블로그 추천 시스템을 통해서 특정 주제의 유사도에 따라 주제를 찾아 주는 것이다. 유사 추천 시스템을 실현하기 위해서는 대규모 데이터 집합에서 유사항목을 가진 그룹을 찾을 수 있도록 군집해야 한다. 군집화(clustering) 기법은 군집하고자 하는 목적에 따라 적합한 기법과 군집수가 결정되어야 한다. 군집기법으로는 가장 많이 사용되는 K-means 알고리즘을 사용 하였고 추천 알고리즘은 흰개미 군집 알고리즘을 사용하였다. 흰개미 습성 모델을 이용한 군집화 기법은 K-means 알고리즘이 갖고 있는 적절한 군집 갯수 문제점을 해결하고, 군집화 시간을 단축하며, 군집을 위한 군집 평균 이동횟수를 개선한다.

범주형 데이터의 분류를 위한 퍼지 군집화 기법 (A Fuzzy Clustering Algorithm for Clustering Categorical Data)

  • 김대원;이광형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.63-66
    • /
    • 2003
  • 본 논문에서는 범주형(categorical) 데이터의 분류를 위한 새로운 기법을 제시한다. 기존의 대표적인 퍼지 군집화 방법인 fuzzy k-modes 알고리즘은 군집 (cluster)의 중심을 단일값으로 표현한 반면, 제안하는 기법에서는 이를 퍼지값으로 정의한다. 이와 같은 퍼지 중심 표현기법을 도입함으로써 범주형 데이터의 분류시에 발생하는 불확실성을 최소화할 수 있다. 기존의 대표적인 방법들과의 비교실험으로 통해 제안한 방법의 성능을 검증하였다.

  • PDF

유전자 알고리즘을 이용한 효율적인 패턴 분류 시스템 구현 (The implementation of efficient pattern classification system using the gene algorithm)

  • 이호현;최용호;서원택;조범준
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.792-795
    • /
    • 2002
  • 현재 많은 관심의 대상이 되고 있는 데이터 마이닝은 대용량의 데이터베이스로부터 일정한 패턴을 분류하여 지식의 형태로 추출하는 작업이다. 데이터 마이닝의 대표적인 기법인 군집화는 군집내의 유사성을 최대화하고 군집들간의 유사성을 최소화 시키도록 데이터 집합을 분할하는 것이다. 데이터 마이닝에서 군집화는 대용량 데이터를 다루기 때문에 원시 데이터에 대한 접근 횟수를 줄이고 알고리즘이 다루어야 할 데이터 구조의 크기를 줄이는 군집화 기법이 활발하게 사용된다. 그런데 기존의 군집화 알고리즘은 잡음에 매우 민감하고, local minima에 반응한다. 또한 사전에 군집의 개수를 미리 결정해야 하고, initialization 값에 따라 군집의 성능이 좌우되는 문제점이 있다. 본 연구에서는 유전자 알고리즘을 이용하여 자동으로 군집의 개수를 결정하는 LONGEPRO 알고리즘을 제안하고, 여기서 제시하는 적합도 함수의 최적화된 군집을 찾아내여 조금더 효율적인 알고리즘을 만들어 대용량 데이터를 다루는 데이터 마이닝에 적용해 보려 한다.

  • PDF

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

분자생물학적 기법을 사용한 질산화유도 반응기내 군집동태변화

  • 조순자;정용주;김정철;이상준
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2005년도 봄 학술발표회지 제14권(제1호)
    • /
    • pp.247-248
    • /
    • 2005
  • 본 연구는 서로 다른 조건에서 질산화를 유도한 반응기의 군집동태를 살피기 위해 RAPD, ARDRA, DGGE와 같은 기법들을 적용시켜 반응기 초기의 슬러지 구성 군집의 상태 와 질산화 유도후의 군집 변화를 살펴보고자 하였다. 결과적으로 1.5 kb정도의 165 rDNA를 이용한 RAPD와 ARDRA에서는 RAPD에 의한 군집 Patterns변화가 훨씬 다양했으며, 250 bP정도의 PCR산물로 분리를 시도한 DGGE에서도 비교적 예상했던 바와 같이 군집이 단순화되는 양상을 볼 수 있었다.

  • PDF

대표 경로에 기반한 XML 문서의 계층 군집화 기법 (A Hierarchical Clustering Technique of XML Documents based on Representative Path)

  • 김우생
    • 인터넷정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.141-150
    • /
    • 2009
  • XML은 데이터 교환과 정보 관리에 점차 중요해지고 있다. 근래에 XML 문서들에 대한 접근, 질의, 저장을 위한 효율적인 기법들을 개발하기 위해 많은 노력들이 이루어지고 있다. 이 논문에서 우리는 XML 문서들을 효율적으로 군집화하는 새로운 방법을 제안한다. XML 문서의 특징을 위해 XML 문서의 구조와 내용을 대표할 수 있는 새로운 대표 경로, 즉 가상 경로가 제안된다. XML 문서들을 군집화하기 위해 잘 알려진 계층 군집화 기법들을 대표 경로들에 적용하기 위한 방법도 제안된다. 실험을 통해 XML 문서의 특징으로 가상 경로를 사용했을 때 실제적인 군집들이 촘촘한 형상으로 잘 형성됨을 알 수 있다.

  • PDF

고차원 범주형 데이터를 위한 투영 군집화 기법의 핵심 요소 개발 (Development of Core Components of Projected Clustering for High-Dimensional Categorical Data)

  • 김민호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.181-183
    • /
    • 2006
  • 본 논문은 고차원의 범주형 데이터에 대한 군집화에 대해서 다룬다. 기존의 범주형 데이터 객체를 위한 유사성(상이성) 계측들의 기저에 깔려 있는 한계점은 수치형 데이터에서와 같은 순서화 (ordering)의 부재와 데이터의 고차원성과 희소성에 기인하는데, 이를 효과적으로 극복할 수 있는 기법이 투영 군집화이다. 본 논문에서는 고차원의 범주형 데이터를 효과적으로 처리할 수 있는 투영 군집화를 다루며 핵심 요소인 군집 차원의 정의와 군집 응집도를 제안한다.

  • PDF

군집화를 위한 베이지안 학습 기반의 퍼지 규칙 추출 (Bayesian Learning based Fuzzy Rule Extraction for Clustering)

  • 한진우;전성해;오경환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.389-391
    • /
    • 2003
  • 컴퓨터 학습의 군집화는 주어진 데이터를 서로 유사한 몇 개의 집단으로 묶는 작업을 수행한다. 군집화를 위한 유사도 결정을 위한 측도는 많은 기법들에서 매우 다양한 측도들이 사용되고 또한 연구되어 왔다. 하지만 군집화의 결과에 대한 성능측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고 애매한 경우가 많다. 퍼지 군집화는 이러한 애매한 군집화 문제에 있어서 융통성 있는 군집 결정 방안을 제시해 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 베이지안 학습을 통하여 군집화를 위한 퍼지 멤버 함수값을 구하였다. 본 연구에서는 최적의 퍼지 군집화 수행을 위하여 베이지안 학습 기반의 퍼지 규칙을 추출하였다. 인공적으로 만든 데이터와 기존의 기계 학습 데이터를 이용한 실험을 통하여 제안 방법의 성능을 확인하였다.

  • PDF

붓스트랩 기법과 유전자 알고리즘을 이용한 최적 군집 수 결정 (Determination of Optimal Cluster Size Using Bootstrap and Genetic Algorithm)

  • 박민재;전성해;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.263-266
    • /
    • 2002
  • 데이터의 군집화를 수행할 때 최적 군집수 결정은 군집 결과의 성능에 많은 영향을 미친다. 특히 K-means 방법에서는 초기 군집수 K에 따라 군집결과의 성능 차이가 많이 나타난다. 하지만 대다수의 군집분석에서 초기 군집수의 결정은 경험을 바탕으로 하여 주관적으로 결정된다. 이때 개체수와 속성수가 증가하면 이러한 결정은 더욱 어려워지며 이때 결정된 군집수가 최적이 된다는 보장도 없다. 본 논문에서는 군집의 수를 자동으로 결정하고 그 결과의 유효성을 보장하기 위해 유전자 알고리즘에 기반한 최적 군집수 결정 방안을 제안한다. 데이터의 속성에 근거한 초기 해 집단이 생성되고, 해 집단 내에서 최적화된 군집수를 찾기 위해 교차 연산이 이루어진다. 적합도 값은 전체 군집화의 비 유사성의 합의 역으로 결정되어 전체적인 군집화 성능이 향상되는 방향으로 수렴된다. 또한 지역 국소값을 해결하기 위해 돌연변이 연산이 사용된다. 그리고 유전자 알고리즘의 학습 시간의 비용을 줄이기 위해 붓스트랩 기법이 적용된다.