• Title/Summary/Keyword: 군집제어

Search Result 195, Processing Time 0.03 seconds

Indirect Configuration Control of Embedded Swarm System Based on Human-Swarm Interaction (임베디드 군집 시스템의 상호작용 기반 간접적 군집 구성 제어)

  • Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2019
  • Embedded swarm systems consist of a large number of robots that use local control laws based on spatial information nearby environment and adjacent robots. In this paper, we propose a new scheme for indirect swarm configuration in swarm interaction system to adapt the swarm operation according to the desired goal. Also, we provide a method for the operator to observe the state of the swarm, which results in providing appropriate input to the swarm. We analyze the stability properties of the proposed swarm system and show the simulation results.

Analysis and Application of Power Consumption Patterns for Changing the Power Consumption Behaviors (전력소비행위 변화를 위한 전력소비패턴 분석 및 적용)

  • Jang, MinSeok;Nam, KwangWoo;Lee, YonSik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.603-610
    • /
    • 2021
  • In this paper, we extract the user's power consumption patterns, and model the optimal consumption patterns by applying the user's environment and emotion. Based on the comparative analysis of these two patterns, we present an efficient power consumption method through changes in the user's power consumption behavior. To extract significant consumption patterns, vector standardization and binary data transformation methods are used, and learning about the ensemble's ensemble with k-means clustering is applied, and applying the support factor according to the value of k. The optimal power consumption pattern model is generated by applying forced and emotion-based control based on the learning results for ensemble aggregates with relatively low average consumption. Through experiments, we validate that it can be applied to a variety of windows through the number or size adjustment of clusters to enable forced and emotion-based control according to the user's intentions by identifying the correlation between the number of clusters and the consistency ratios.

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

Outdoor Swarm Flight System Based on RTK-GPS (RTK-GPS 기반 실외 군집 비행 시스템 개발)

  • Moon, SungTae;Choi, YeonJu;Kim, DoYoon;Seung, Myeonghun;Gong, HyeonCheol
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1315-1324
    • /
    • 2016
  • Recently, the increasing interest in drones has resulted in development of new related technologies. Attention has been focused toward research on swarm flight which controls drones simultaneously without collision. Thus, complicated missions can be completed rapidly through collaboration between drones. Due to low position accuracy, GPS is not appropriate for the outdoor mission involving accurate flight. In addition, the inaccurate position estimation of GPS gives rise to the serious problem of collision, since many drones are controlled in a narrow space. In this study, we increased the accuracy of position estimation through various sensors with Real-Time Kinematic-GPS (RTK-GPS). The mode switching algorithm was proposed to minimize the problem of sensor error. In addition, we introduced the outdoor swarm flight system based on the proposed position estimation.

Optimize TOD Time-Division with Dynamic Time Warping Distance-based Non-Hierarchical Cluster Analysis (동적 타임 워핑 거리 기반 비 계층적 군집분석을 활용한 TOD 시간분할 최적화)

  • Hwang, Jae-Yeon;Park, Minju;Kim, Yongho;Kang, Woojin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.113-129
    • /
    • 2021
  • Recently, traffic congestion in the city is continuously increasing due to the expansion of the living area centered in the metropolitan area and the concentration of population in large cities. New road construction has become impossible due to the increase in land prices in downtown areas and limited sites, and the importance of efficient data-based road operation is increasingly emerging. For efficient road operation, it is essential to classify appropriate scenarios according to changes in traffic conditions and to operate optimal signals for each scenario. In this study, the Dynamic Time Warping model for cluster analysis of time series data was applied to traffic volume and speed data collected at continuous intersections for optimal scenario classification. We propose a methodology for composing an optimal signal operation scenario by analyzing the characteristics of the scenarios for each data used for classification.

An Illegal Drone Tracking Scheme Using Swarming Flight (군집 비행을 이용한 불법 드론 추적 기법)

  • Kim, Ryun-Woo;Song, Hong-Jong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.943-948
    • /
    • 2022
  • Drones have been widely used in various fields due to the rapid development of done-related technologies, which causes various problems. The schemes which can track target drones by using signal transmitted by target drones have been investigated as a key technology for anti-drone systems to solve these problems. In this paper, we investigate an illegal drone tracking system based on swarming flight that consists of multiple small drones in order to resolve the limitations of a conventional system that consists of a single drone. In addition, we also propose a scheme with which we can adaptively adjust the separation distance between small drones in a swarm according to channel situations. We analyzed the performance of the proposed scheme in terms of success ratio and the number of movements. The proposed scheme can improve the success ratio and the number of movements by 170% and 63% respectively, compared to the conventional scheme.

Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot (추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어)

  • Park, Bong Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.

Hybrid Modeling and Control for Platoon Maneuvers in Automated Highway Systems (군집주행 기동을 위한 하이브리드 모델링 및 제어기 설계)

  • 전성민;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1014-1022
    • /
    • 2002
  • An objective of Automated Highway Systems (AHS) is to increase the safety and throughput of the existing highway infrastructure by introducing traffic automation. AHS is an example of a large scale, multiagent complex dynamical system and is ideally suited for a hierarchical hybrid controller. We discuss a design issue of efficient hybrid controllers for the platoon maneuvers on AHS. For the modeling of a hybrid system including the merge and split operations, a safety distance policy is introduced for the merge and split operations. After that, the platoon system will be modeled by a hybrid system In addition, a hybrid controller for the proposed merge and split operation models is presented. Finally, the performance of the proposed hybrid control scheme is demonstrated via scenarios for platoon maneuvers.

Optimal Communication Channel Scheduling for Remote Control of Lead Vehicle in a Platoon (군집 선행차량의 원격제어를 위한 통신 채널의 최적 스케줄링)

  • 황태현;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.969-976
    • /
    • 2003
  • A remote control strategy for vehicles in Intelligent Vehicle Highway System (IVHS) is considered. An optimal scheduling of a limited communication channel is proposed for lead vehicle control in a platoon. The optimal scheduling problem is to find the optimal communication sequence that minimizes the cost obtained inherently by an optimal control without the communication constraint. In this paper, the PID control law which guarantees the string stability is used for the lead vehicle control. The fact that the PID control law is equivalent to the approximately linear quadratic tracker allows to obtain the performance measure to find an optimal sequence. Simulations are conducted with five maneuvering platoons to evaluate the optimality of the obtained sequence.

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance (모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1038-1043
    • /
    • 2010
  • In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.