• Title/Summary/Keyword: 국제우주정거장 (International Space Station)

Search Result 26, Processing Time 0.022 seconds

Is Yi Soyeon an astronaut or a space tourist? : The First Korean Astronaut Debate on the view of ANT (이소연은 우주인인가 관광객인가? : ANT의 관점으로 본 한국최초우주인 논쟁)

  • An, Hyoung-Joon
    • Journal of Science and Technology Studies
    • /
    • v.9 no.1
    • /
    • pp.89-127
    • /
    • 2009
  • The Korean Astronaut Project(KAP) aims to make the first Korean astronaut fly and take part in space activities in the International Space Station(ISS) in April 2008. KAP was on the purpose of studying the requirement to master manned space technologies as part of the long-term basic plan for national space development. However, people criticized that Ms. Yi was a 'space tourist' not an 'astronaut' because KAP was a program for pride, prestige in 21c's new space race, not specifically science and technology. The government emphasized that Yi carried out her 15 experiments in ISS very competently. In contrast people devaluated Yi's space experiments as below the level, though some of them are enough meaningful to be published on SCI journals. Why did the government fail to make people take Ms. Yi as an astronaut? I answer to this question using the notion of "Network Analysis" based on Actor-Network Theory(ANT).

  • PDF

초고에너지 우주선 관측을 위한 JEM-EUSO 프로젝트의 진행 현황

  • Im, Hui-Jin;Kim, Seok-Hwan;Kim, Sun-Uk;Park, Il-Heung;Yang, Jong-Man;Lee, Jik;Jeong, Ae-Ra
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.222.1-222.1
    • /
    • 2012
  • JEM-EUSO (Extreme Universe Space Observatory on-board the Japanese Experiment Module)는 국제우주정거장(International Space Station)의 일본 실험 모듈인 'KIBO'에 우주 망원경을 설치하여, 100 EeV이상의 초고에너지 우주선 관측을 수행함으로써, 초고에너지의 스펙트럼, 구성성분과 기원을 연구하는 국제공동연구 프로젝트이다. 구경 2.5 m로 60도의 광시야각을 가지는 대형 굴절 망원경을 통해서, 지구 대기에 우주선 shower로부터 발생한 형광 신호를 관측하려고 한다. 이 프로젝트는 2016~2017년에 발사되어, 5년 이상의 임무 수행을 목표로 하고 있으며, 그 전단계로 Prototype 시스템을 가지고 지상실험인 EUSO-TA와 고도 40 km에서 수행할 EUSO-Balloon실험을 준비하고 있다. 먼저, 망원경의 prototype을 2012년 12월쯤 미국 유타에 있는 Telescope Array(TA) 실험에 설치하여 우주선 또는 임의로 인가한 광원에 의해서 생성된 shower를 TA의 Fluorescence Detector와 함께 측정하여, 시스템 calibration과 더불어 지상에 검출된 우주선을 연구할 계획이다. 그 이듬해인 2013년 여름에는 Balloon에 망원경의 Engineering model을 실어서, 대기고도 40 km아래에서 우주선에 의해 생성되는 shower를 개발한 트리거 시스템을 통해서 검출하고, 대기권에 존재하는 UV background 광원들을 측정하여 우주선을 연구할 예정이다. 한국 그룹은 JEM-EUSO을 위해서 개발한 디지털 신호처리 및 트리거 장치의 제작 중에 있으며, 위의 실험들을 위해 망원경과 함께 조립하여 테스트를 수행할 계획이다.

  • PDF

Development and Verification for Flight Model of CubeSat LINK (큐브위성 LINK 비행모델 개발 및 설계 검증)

  • Kim, Jongbum;Jung, Youeyun;Lim, Yeerang;Bang, Hyochoong;Marin, Mikael
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.114-123
    • /
    • 2017
  • Little Intelligent Nanosatellite of KAIST(LINK) is a 2U-size CubeSat which is developed by Aerospace Systems & Control Lab.(ASCL) of KAIST as a part of the international cooperation project QB50. The objective of the QB50 project is to carry out atmospheric research within the lower thermosphere and ionosphere and CubeSats are planned to be deployed at the International Space Station(ISS) from the first quarter of 2017. To implement this objective, a flight model(FM) of LINK has been successfully developed and the design and performance of the satellite have been verified by performing environment and function tests in accordance with acceptance requirement level. This paper describes the development of flight model and the results of vibration and thermal vacuum test.

Analysis of Development Requirements on Simulated Ground Test Module for Underwater Residential Facilities (해저거주시설 모사 지상실험모듈 개발 요구사항 분석)

  • Joohee Lee;Younkyu Kim;Jongwon Lee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.3
    • /
    • pp.206-220
    • /
    • 2022
  • There are various systems that allow humans to safely maintain their space exploration missions and lives in completely different environments, such as the International Space Station, the Moon (the closest celestial body to Earth), and Mars (the only planet in the solar system for manned mission in the 2030s). Among them, when it comes to maintaining the basic breathing of humans, the human life support air management system is a key device system. Such an air management system can be used not only for space exploration but also for undersea bases and submarines on Earth where humans reside. The air management system basically consists of an oxygen generation system, a carbon dioxide removal system, and a harmful substance removal system. In this paper, in order to develop an air management system that can be used in an underwater residential platform, the development requirements of a ground test module to be used as an experimental facility were analyzed.

Increment Method of Radar Range using Noise Reduction (잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법)

  • Lee, Dong-Hyo;Chung, Daewon;Shin, Hanseop;Yang, Hyung-Mo;Kim, Sangdong;Kim, Bong-seok;Jin, Youngseok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

Performance Evaluation of Inertial Balance for Measuring Mass in Microgravity (마이크로중력환경에서 사용 가능한 관성저울의 성능평가)

  • Jang, Hyun-Jin;Lee, Joo-Hee;Choi, Jae-Hyuk;Park, Seul-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1395-1401
    • /
    • 2014
  • In an effort to develop and implement an inertial balance with high performance, the response characteristics of a load cell, which are some of the critical parameters for optimal system design, were evaluated using a sample object of approximately 100 g under microgravity conditions. To this end, a 15-m drop-tower was used to produce microgravity conditions, and the response characteristics of the load cell were investigated in terms of the variations in the magnitude of the deceleration of the sample object, noting that the mass of a living animal should be determined in microgravity. An analysis of the ratio of the inertial forces clearly demonstrated that the average velocity of a load cell plate should be higher than 0.5 m/s to meet the design requirements.