• 제목/요약/키워드: 국소적 특징

검색결과 223건 처리시간 0.028초

고차국소 자기상관함수를 이용한 에지 특징벡터의 생성과 유사이미지에의 적용 (Edge Feature Vector Extraction using Higher-Order Local Autocorrelation and Its Application in Image Retrieval)

  • 윤미진;오군석;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.562-564
    • /
    • 2002
  • 본 논문에서는 자기상관함수의 국소적 특징을 사용하여 에지 특징을 추출한 후, 이를 이용해 유사이미지를 검색하는 방법을 제시한다. 자기상관함수의 국소적 특징을 이용하여 이미지를 검색할 경우 크기, 밝기, 색상등과 같은 이미지 요소가 서로 다를 경우에도 영향을 받지 않고 에지 특징정보를 추출해 낼 수 있다. 이는 얻어진 에지 특징을 이미지 크기와 고차 국소 자기상관함수의 변위에 의해 변하지 않도록 정규화를 하고, 동일 이미지에 대해 밝기가 조금 달라지면 검색효율이 떨어지는 점을 해결하기 위해 거리척도로서 방향여현거리(direction cosine distance)를 이용함으로써 가능하다. 이렇게 추출된 특징벡터를 자기조직화 맵에 의하여 클러스터링하고, 유사이미지 검색의 효율성을 비교해본 결과, 본 논문에서 제시한 방법을 사용하여 검색한 경우 재현율이 기존의 방법에 비해서 비교적 높은 수치를 나타냈다.

  • PDF

Adaptive Nearest Neighbors를 활용한 결측치 대치

  • 전명식;정형철
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.185-190
    • /
    • 2004
  • 비모수적 결측치 대치 방법으로 널리 사용되는 k-nearest neighbors(KNN) 방법은 자료의 국소적(local) 특징을 고려하지 않고 전체 자료에 대해 균일한 이웃의 개수 k를 사용하는 단점이 있다. 본 연구에서는 KNN의 대안으로 자료의 국소적 특징을 고려하는 adaptive nearest neighbors(ANN) 방법을 제안하였다. 나아가 microarray 자료의 경우에 대하여 결측치 대치를 통해 KNN과 ANN의 성능을 비교하였다.

  • PDF

특징점간의 벡터 유사도 정합을 이용한 손가락 관절문 인증 (Finger-Knuckle-Print Verification Using Vector Similarity Matching of Keypoints)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제16권9호
    • /
    • pp.1057-1066
    • /
    • 2013
  • 손가락 관절문(FKP, finger-knuckle-print)을 이용한 개인 인증은 손가락 관절부에 나타나는 주름의 특징을 이용하는 것으로, 텍스처의 방향 정보가 중요한 특징이 된다. 본 논문에서는 SIFT 알고리즘을 이용하여 특징점들을 추출하고, 벡터 유사도 정합을 통해 FKP를 효과적으로 인증할 수 있는 방법을 제안하다. 벡터는 질의 영상에서 추출한 특징점과 이에 대응되는 참조 영상의 특징점을 연결하는 방향 벡터로 정의된다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 벡터 자체는 국소적인 특징만을 나타내지만, 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교함으로써 전역적인 특징으로 확장되는 장점이 있다. 실험결과 제안하는 방법은 기존의 방향코드를 이용한 다양한 방식에 비하여 우수한 성능을 나타내었다.

국소적 치아이형성증의 임상적 방사선학적 연구 : 5년 추적관찰 (A Clinical and Radiological Study of Regional Odontodysplasia: Five-year Follow-up)

  • 송지현
    • 대한소아치과학회지
    • /
    • 제41권4호
    • /
    • pp.322-327
    • /
    • 2014
  • 국소적 치아이형성증(Regional Odontodysplasia)은 드물게 발생하는 발육성 장애로, 이환된 치아는 임상적, 방사선학적, 조직학적으로 특징적인 소견을 보인다. 국소적 치아이형성증은 유치열과 영구치열에 모두 영향을 미치며, 임상적으로 정상치아보다 크기가 작거나, 거칠고 불규칙한 치면을 가지는 등 형성부전, 석회화부전의 양상을 보인다. 방사선학적으로는 법랑질과 상아질이 얇고, 경계가 뚜렷하지 않아 방사선불투과성이 명확하지 않으며, "ghost-like appearance"와 같은 특징적인 소견을 보인다. 조직학적으로는 저석회화된 법랑질이 보이며, 법랑소주가 불규칙한 방향을 나타내고, 상아세관의 수가 감소되어 있다. 국소적 치아이형성증의 원인은 정확히 밝혀지지 않았으며, 상악 좌측에서 호발하고, 인종간의 유병률 차이는 존재하지 않으며, 남성에 비해 여성에서 더 호발하는 것으로 알려져 있다. 이 증례는 4세 6개월의 환아에서 임상적, 방사선학적 검사 결과 상악 우측 악궁에 발생한 국소적 치아이형성증으로 진단하고, 5년간의 주기적인 관찰을 시행하였다. 국소적 치아이형성증에 이환된 치아는 취약한 치면과 미성숙한 치근 때문에 예후가 불량할 수 있으므로 개개치아에 대한 주의깊은 임상적, 방사선학적 관찰을 통한 시기적절한 치료계획 수립이 중요할 것이다.

자료 변환 기반 특징 선택과 국소적 자기상관 지수를 이용한 초분광 영상의 이상값 탐지 (Anomaly Detection from Hyperspectral Imagery using Transform-based Feature Selection and Local Spatial Auto-correlation Index)

  • 박노욱;유희영;신정일;이규성
    • 대한원격탐사학회지
    • /
    • 제28권4호
    • /
    • pp.357-367
    • /
    • 2012
  • 이 논문에서는 초분광 영상으로부터 이상값을 탐지하기 위해 자료 변환 기반 특징 추출과 선정 및 국소적 자기상관지수를 이용하는 2단계 방법론을 제안한다. 초분광 영상이 제공하는 중복된 분광 정보들의 축약을 위해 우선적으로 주성분 변환과 3차원 웨이브렛 변환을 적용하였다. 그리고 축약된 자료 변환 기반 특징을 대상으로 왜도와 국소적 왜도 비율을 함께 고려하여 이상값 탐지를 위한 유효 특징을 선정하였다. 최종적으로 기존 분광 정보만을 이용하는 이상값 탐지 방법론들에 공간 자기상관성을 함께 고려할 수 있도록 국소적 자기상관지수(LISA)를 이상값 탐지 방법론으로 적용하였다. 제안 방법론의 적용성 평가를 위해 항공 CASI 자료를 대상으로 한 실험을 수행하였다. 실험 결과, 기존 분광 정보만을 고려하는 RX detector나 고유값 기반 주요 주성분만을 이용하는 경우에 비해 유효 특징 선정과 연계된 LISA 통계값이 높은 탐지 능력을 나타내었다. 또한 3차원 웨이브렛 변환 기반 저주파와 고주파 특징들을 결합한 경우가 유효 주성분을 사용하는 경우에 비해 가장 높은 탐지 성능을 나타냈다.

의료영상 이미지를 이용한 유전병변 정합 알고리즘 (Genetic lesion matching algorithm using medical image)

  • 조영복;우성희;이상호;한창수
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.960-966
    • /
    • 2017
  • 제안 논문에서는 의료영상 이미지를 입력받아 병변 추출이 가능한 알고리즘을 제안한다. 의료영상 이미지의 병변을 추출하기 위해 SIFT 알고리즘을 이용해 특징점들을 추출한다. 특징점의 강도를 높이기 위해 벡터 유사도를 이용해 입력 영상과 병변이미지를 정합하고 병변을 추출한다. 벡터 유사도 정합을 통해 빠르게 병변을 도출할 수 있다. 국소적인 특징점 쌍으로부터 방향 벡터를 생성하기 때문에 방향 자체는 국소적인 특징만을 나타내지만 두 영상 간에 존재하는 다른 벡터들 간의 유사도를 비교하고 전역적인 특징으로 확장될 수 있는 장점을 갖는다. 또한 병변 정합 오류율은 평균 1.02%, 처리속도는 특징점 강도 정보를 사용하지 않을 때보다 약 40%가 향상됨을 실험을 통해 보였다.

Adaptive Nearest Neighbors를 활용한 판별분류방법 (Adaptive Nearest Neighbors for Classification)

  • 전명식;최인경
    • 응용통계연구
    • /
    • 제22권3호
    • /
    • pp.479-488
    • /
    • 2009
  • 비모수적 판별분류방법으로 널리 사용되는 ${\kappa}$-Nearest Neighbors Classification(KNNC) 방법은 자료의 국소적 특징을 고려하지 않고 전체 자료에 대해 고정된 이웃의 개수 ${\kappa}$를 사용하여 개체를 분류하는 방법이다. 본 연구에서는 KNNC의 대안으로 자료의 국소적 특징을 고려하는 Adaptive Nearest Neighbors Classificaion(ANNC) 방법을 제안하였다. 제안된 방법의 특징을 규명하기 위하여 실제 자료에 대한 분석을 통하여 제안된 방법의 응용 가능성을 제시하였으며, 나아가 모의실험을 통하여 기존의 방법과의 효율성을 비교하였다.

컨볼루션 뉴럴 네트워크를 이용한 한글 서체 특징 연구 (A study in Hangul font characteristics using convolutional neural networks)

  • 황인경;원중호
    • 응용통계연구
    • /
    • 제32권4호
    • /
    • pp.573-591
    • /
    • 2019
  • 로마자 서체에 대한 수치적 분류체계는 잘 발달되어 있지만, 한글 서체 분류를 위한 기준은 수치적으로 잘 정의되어 있지 않다. 본 연구의 목표는 한글 서체 분류를 위한 수치적 기준을 세우기 위해, 서체 스타일을 구분하는 중요한 특징들을 찾는 것이다. 컨볼루션 뉴럴 네트워크(convolutional neural network)를 사용하여 명조와 고딕 스타일을 구분하는 모형을 세우고, 학습된 필터를 분석해 두 스타일의 특징을 결정하는 피처(feature)를 찾고자 한다.

ViT 기반 모델의 강건성 연구동향 (A Research Trends on Robustness in ViT-based Models)

  • 신영재;홍윤영;김호원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.510-512
    • /
    • 2022
  • 컴퓨터 비전 분야에서 오랫동안 사용되었던 CNN(Convolution Neural Network)은 오분류를 일으키기 위해 악의적으로 추가된 섭동에 매우 취약하다. ViT(Vision Transformer)는 입력 이미지의 전체적인 특징을 탐색하는 어텐션 구조를 적용함으로 CNN의 국소적 특징 탐색보다 특성 픽셀에 섭동을 추가하는 적대적 공격에 강건한 특성을 보이지만 최근 어텐션 구조에 대한 강건성 분석과 다양한 공격 기법의 발달로 보안 취약성 문제가 제기되고 있다. 본 논문은 ViT가 CNN 대비 강건성을 가지는 구조적인 특징을 분석하는 연구와 어텐션 구조에 대한 최신 공격기법을 소개함으로 향후 등장할 ViT 파생 모델의 강건성을 유지하기 위해 중점적으로 다루어야 할 부분이 무엇인지 소개한다.

차량 전면 영상을 이용한 고속 차량 모델 인식 알고리즘 (Fast Car Model Recognition Algorithm using Frontal Vehicle Image)

  • 정도욱;김효연;최형일
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2015년도 춘계 종합학술대회 논문집
    • /
    • pp.305-306
    • /
    • 2015
  • 과속차량 단속카메라에 촬영된 차량 전면 영상은 차량번호를 인식하여 과속차량에 과금하는 용도로 사용되나 범죄 용의자 차량을 추적하기 위한 용도로도 사용되어진다. 본 연구에서는 국소특징점의 정합을 이용하여 차량 모델을 찾는 방법을 넘어서 실시간으로 차량 모델을 찾기 위한 알고리즘을 제안한다. 입력된 영상에 대하여 차량의 모델을 특징지을 수 있는 헤드라이트를 포함한 차량의 그릴 영역을 관심영역으로 제한하고 관심영역에서 추출된 특징점들을 모델 특징벡터 데이터베이스의 자료와 비교하는 방법 을 사용하였다. 입력 영상의 크기 변화와 조명 변화에 강인한 SURF 국소특징점을 이용한 매칭 방법은 차량 모델을 찾는데 적합하나 선형적으로 탐색하는데 시간이 오래걸린다. 따라서 블러를 사용하여 차량 이미지에서 추출되는 특징점들의 수를 매칭이 가능한 수준으로 낮추는 방법으로 모델 자료로부터 탐색에 필요한 시간을 단축시켰다. 또한 모델 자료를 구조화하여 탐색시간을 줄이는 방법들을 비교하여 LSH 를 사용한 결과 차량 모델을 탐색하는데 필요한 시간이 단축됨을 보였다.

  • PDF