• Title/Summary/Keyword: 구조 폼

Search Result 280, Processing Time 0.024 seconds

Effects of Stitching Thread on Fatigue Characteristics of Polyurethane foam Cored Sandwich Structure (우레탄 폼 코아 샌드위치 구조물의 피로특성에 미치는 스티칭 사의 영향)

  • 김재훈;이영신;박병준;김영기;김덕회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.71-75
    • /
    • 2000
  • The effects of stitching thread on fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Fatigue test and static test, being used in four point bending test, are performed with various diameters and distances of stitching thread. The Results show that the maximum load for bending tests is similar to each other, but after $1O^6$ fatigue cycles, the stiffness degradation of the stitching thread diameter $\emptyset$ 3mm specimen is a much larger than that of the $\emptyset$ 5mm specimen.

  • PDF

e-Logistics Integration System based on ebXML specifications (EbXML 표준에 기반한 다자간 물류 통합 정보시스템)

  • 황재각;오세원;이용준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.64-66
    • /
    • 2002
  • 인터넷 기반의 e-Business 플랫폼은 최근 몇 년 사이에 폭발적으로 증가하고 있으며 비용과 시간적인 측면에서 기존 Legacy 시스템의 서로 다른 플랫폼과 다양한 문서 구조들 사이의 상호 운용적인 문제를 해결하여 통합적인 비즈니스 프레임워크를 구성하는 방법에 대해 관심이 점차 증대되고 있다. 하지만 거래 기업간 서로 다른 플렛폼과 서로 다른 문서 구조를 가지고 있으므로 시스템들의 통합 및 상호 운용성에 있어 많은 어려움이 존재한다. 이러한 문제를 해결하기 위하여 ebXML기반의 다자간 물류 시스템의 프레임워크를 설계하여 기업들로 하여금 e-business환경에서 전자적으로 협업을 수행하고 보다 원활하게 정보를 교환할 수 있는 시스템의 기준을 제시한다.

  • PDF

Study on the Utilization of System Form By the Variation on Structure Elevation (구조물 입면 변화에 따른 시스템 거푸집 활용 방안 연구)

  • Lee, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.207-208
    • /
    • 2014
  • The construction of economic, efficient and stable process has been a major challenge as the building are getting high-rise and biger. Low-rise buildings widely have been used Euro-form in the past. Recently, we are mainly using Al-form which can respond to chang in the various structures. we should be used in combination with Al-form and Gang-form to ensure the quality and construction process, according to the change of various elevations. Recently construction project is reguired diversification of elevation. And we apply the open balcony on the general architecture as well as public housing. Accordingly, Al-form & Gang-form has been applied the change of elevation, We further apply design and construction as proposal of issues and alternatives.

  • PDF

Thrust and Flow Visualization according to Length of Condenser Section of Open Pulsating Heat Pipe (개방형 구조의 진동형 히트파이프의 응축부 길이에 따른 추력 및 유동 가시화)

  • Minjae Son;Jongwook Choi
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.57-64
    • /
    • 2023
  • An open pulsating heat pipe operates continuously by inflow and outflow fluids through an open-type condenser. The open pulsating heat pipe is a device capable of obtaining the thrust due to the variation of internal pressure during phase change. Therefore, the open pulsating heat pipe is a suitable device to move fluids if the heat source such as waste heat exists. Many numerical studies have not been sufficiently conducted on the open pulsating heat pipe. In this study, the numerical analysis of the open pulsating heat pipe is performed according to the length of the condenser section. The OpenFOAM software is used to obtain the thrust and the flow visualization for the open pulsating heat pipe.

The Study on Information Visualization Methods Using 3D interactive Animation (3차원 인터랙티브 애니메이션을 활용한 정보시각화 방법에 관한 연구)

  • 김성곤
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.299-308
    • /
    • 2004
  • The methods of presenting information are more variable with advanced computer media technology. However, when we visualize information of database, it is more difficult to understand data meaning by complex date, which is not required by user. To compose new information, user needs to combine own his memory and new information presenting result. To be quickly explored new information and be exactly understood relationship of data structure, the data presenting of visualized information is more structured and presented with meaning form. It is possible to make information visualization system, which users can explore database by oneself, with supporting interaction to be able to control and combine relationship of three-dimensional scene graphic structure, presenting factors of animation and data structure of database. There are several diagrams, such as VR diagram, Form structure diagram and simulated diagram as the case study.

  • PDF

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험)

  • Choi, Won;Park, Hyun-Bum;Kong, Chang-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.336-343
    • /
    • 2014
  • Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

A Study on Structural Design of High Efficency and Lightweight Composite Propeller Blades of Regional Aircraft (중형항공기 고효율 복합재 블레이드의 설계 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.501-504
    • /
    • 2011
  • In this study, structural design of the propeller blade for turboprop aircraft was performed. The propeller shall have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material was used for the major structure and skin-spar-foam sandwich structural type was adopted for improvement of lightness. As a design procedure for the present study, firstly the structural design load was estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads were preliminarily sized using the netting rule. In order to investigate the structural safety and stability, stress analysis was performed by finite element analysis code MSC. NASTRAN. Finally, it is investigated that designed blade have high efficiency and structural safety to analyze of aerodynamic and structural design results.

  • PDF

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

Study on Impact Damage Behavior of Sandwich Composite Structure for aircraft (항공기 적용 샌드위치 복합재 구조의 충격 손상 거동 연구)

  • Park, Hyunbum;Kong, Changduk
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.36-41
    • /
    • 2013
  • In this study, low velocity impact analysis on composite sandwich structure was performed. Sandwich structure configuration is made of Carbon-Epoxy face sheets and foam cores. For validating study, the results of an experimental and a finite element method analysis were compared previously. From the finite element method analysis results of sandwich panel, it was confirmed that the results of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using finite element method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity. Finally, The comparison of the numerical results with those measured by the experiment showed good agreement.