• Title/Summary/Keyword: 구조 설계 최적화

Search Result 1,746, Processing Time 0.028 seconds

The Optimal Design of Steel Truss by Geometric Programming Method (기하적(幾何的) 계획법(計劃法)에 의한 강재(鋼材)트러스구조물(構造物)의 최적설계(最適設計)에 관한 연구(研究))

  • Jung, Hae Joon;Lee, Gyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.31-44
    • /
    • 1983
  • This paper applies an optimization algorithm for the elastic truss structures. The acceleration technique utilized in this study is the geometric programming method developed by the Operation Research or the applied methematics. The applicability and the efficiency of the algorithm applied in this study are tested for four different trusses. Test results show that the optimum solutions are obtained after only one or seven iterations which is very small compared with other techniques and no oscillation is needed for the convergency. Test rusults also show that the Geometric Programming Method is also effective algorithm for the convergency of the Optimum Solution in case of only being compared with the number of iteration.

  • PDF

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Optimum Design of Truss Structures with Pretension Considering Bucking Constraint (프리텐션을 받는 트러스 구조물의 좌굴을 고려한 최적설계)

  • Kim, Yeon-Tae;Kim, Dae-Hwan;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.197-208
    • /
    • 2010
  • An under-tension system is frequently employed for large-span structures to reduce the deflection and member size. In this study, a microgenetic algorithm was used to find the optimum cross-section of truss structures with an undertension cable under transverse loading. Maximum deflection, allowable stress, and buckling were considered constraints. The proposed approach was verified using a 10-bar truss sample that shows good agreement with the previous results. In the numerical results, minimum-weight design of the under-tension structure was performed for various magnitudes of pretension.

The configuration Optimization of Truss Structure (트러스 구조물의 형상최적화에 관한 연구)

  • Lim, Youn Su;Choi, Byoung Han;Lee, Gyu Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.123-134
    • /
    • 2004
  • In this research, a multilevel decomposition technique to enhance the efficiency of the configuration optimization of truss structures was proposed. On the first level, the nonlinear programming problem was formulated considering cross-sectional areas as design variables, weight, or volume as objective function and behavior under multiloading condition as design constraint. Said nonlinear programming problem was transformed into a sequential linear programming problem. which was effective in calculation through the approximation of member forces using behavior space approach. Such approach has proven to be efficient in sensitivity analysis and different form existing shape optimization studies. The modified method of feasible direction (MMFD) was used for the optimization process. On the second level, by treating only shape design variables, the optimum problem was transformed into and unconstrained optimal design problem. A unidirectional search technique was used. As numerical examples, some truss structures were applied to illustrate the applicability. and validity of the formulated algorithm.

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Optimal Design of Frame Structures with Different Cross-Sectional Shapes (여러 단면형상을 갖는 뼈대구조물의 최적설계)

  • Han, Sang Hoon;Lee, Woong Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.27-37
    • /
    • 1993
  • An efficient method to solve the minimum weight design problem for frame structures subjected to stress and displacement constraints is presented. The different cross-sectional shapes are conside red in order to apply engineering design in which usually required custom fabrication. To increase the efficiency of the optimization process, the structural response quantities(nodal forces, displacements) are linearized with respect to cross-sectional properties or their reciprocal, based on first order Taylor series expansion, while cross-sectional dimensions are considered as design variables. Numerical examples are performed and compared with other methods to demonstrate the efficiency and reliability of approximation method for frame structural optimization with different cross-sectional shapes. It is shown that the number of finite element analysis is greatly reduced and it leads to a highly efficient method of optimization of frame structures.

  • PDF

The Risk Assessment for Structures by the Response Surface Method Combined with Genetic Algorithm (유전자 알고리즘과 결합된 응답면기법을 이용한 구조물의 위험성 평가)

  • Cho, Tae-Jun;Han, Shocky
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.392-395
    • /
    • 2009
  • 응답면 기법을 활용하여 댐구조물과 같은 사회간접자본 시설물의 파괴확률을 구할 수 있다. 본 위험성 평가과정에서 응답면기법으로 구성한 한계상태 방정식을 유전자알고리즘의 적합도 방정식으로 사용하면, 핵심타입이나 지반종류, 지반다짐정도 등의 입력설계변수의 최적화 과정 속도를 더욱 신속화 시킬 수 있다. 제안된 응답면 기법과 유전자알고리즘의 복합해석기법은 신뢰성기반 최적화프로그램으로 기존의 유전자알고리즘의 수렴속도를 더욱 빠르게 하여주고, 특히 입력변수의 상하한계가 불확실한 경우에도 만족스러운 수렴성을 보장하여준다. 한계상태 방정식의 목표신뢰도 지수를 변화시켜면 해당하는 입력변수의 최적값을 출력하여주므로, 입력변수의 제약조건에 가격함수와 같은 가중치를 벌칙함수로 부여하면 가격최적화 프로그램으로 작용하게 되며, 시설물 운영자에게는 목표신뢰도에 대한 유지관리 기법과 정도를 의사결정 할 수 있도록 하여주는 기능을 가지게 된다. 조사된 많은 댐구조물의 파괴모드가 시간에 독립적으로 시공중 또는 시공완료 후 5년이내에 다수 발생하는바, 파괴모드를 조사하고 중요한 파괴모드인 파이핑 현상에 대해서 파괴확률을 계산하고 최적유지관리를 위한 개선된 유전자알고리즘 최적화 연산을 수행하였다. 기존 댐구조물과 같이 설계변수와 하중의 변동성을 알기가 어려운 경우에 유지관리비용 최소화를 위해서 본 제안 프로그램의 확장된 버젼은 중요한 기준을 제시하여줄 것으로 기대한다.

  • PDF

Application of Linear Goal Programming to Large Scale Nonlinear Structural Optimization (대규모 비선형 구조최적화에 관한 선형 goal programming의 응용)

  • 장태사;엘세이드;김호룡
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.133-142
    • /
    • 1992
  • This paper presents a method to apply the linear goal programming, which has rarely been used to the structural opimization problem due to its unique formulation, to large scale nonlinear structural optimization. The method can be used as a multicriteria optimization tool since goal programming removes the difficulty in defining an objective function and constraints. The method uses the finite element analysis, linear goal programming techniques and successive linearization to obtain the solution for the nonlinear goal optimization problems. The general formulation of the structural optimization problem into a nonlinear goal programming form is presented. The successive linearization method for the nonlinear goal optimization problem is discussed. To demonstrate the validity of the method, as a design tool, the minimum weight structural optimization problems with stress constraints are solved for the cases of 10, 25 and 200 trusses and compared with the results of the other works.

  • PDF

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

Knowledge-based Expert System for the Preliminary Ship Structural Design (선체 구조설계를 위한 지식 베이스 전문가 시스템)

  • Y.S. Yang;Y.S. Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • The objective of this study is to develop knowledge-based system for the preliminary design and midship section design of bulk carrier and to enhance the applicability of knowledge engineering in the field of Naval Architecture. First, expert system shell called E.1 is developed in C language. E.1 supports backward-chaining, automatic iteration procedure and reiterative inference mechanism for efficient application of knowledge-based system in structural design. Knowledge representation in E.1 includes IF-THEN rules, 'facts'and 'tables'. Second, knowledge bases for the principal particulars and midship section design are developed by experimental formula, design standard and experiential knowlege. Third, hybrid system combined this knowledge-based system with the optimization program of midship section is developed. Finally, the simplified design method utilizing the regression analysis of the optimum results of stiffened plate is developed for facilitating the design process. Using this knowledge-based system, the design process and results for Bulk carrier and stiffened plates are discussed. It is concluded that knowledge-based system is efficient for preliminary design and midship section design of the ship. It is expected that the performance of the CAD system would be enhanced if the better knowledge-base is accumulated in the E.1 tool.

  • PDF