• Title/Summary/Keyword: 구조해석모델

Search Result 3,768, Processing Time 0.032 seconds

Seismic Effect of LRB Base Isolator on Bridges (LRB 기초분리장치의 교량 내진효과)

  • Hwang, Eui Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.13-18
    • /
    • 1993
  • The purpose of this study is to analyze the seismic effects of Lead Rubber Bearing base isolators on bridges. Base isolation is the tool to minimize the effect of earthquake before the seismic force is transfered to the structure. Currently, many structures including the buildings, power plants, and bridges, were built and planned with base isolation method. The simple model is developed for bridges with Lead Rubber Bearings. Equations of motion are solved by Newmark ${\beta}$ method. Springs representing the base isolators are assumed as bilinear springs and piers are modeled as nonlinear springs implementing Q-HYST model. Analysis is performed for the selected bridge. El Centro (N-S) earthquake(1940) is used. Deck displacement, pier ductility and pier shear force are calculated for the various Lead Rubber Bearings.

  • PDF

Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling (국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석)

  • Jeon, Jae-Man;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.77-86
    • /
    • 2006
  • The stress analysis of cold-formed channel section steel beams under transverse load is presented. The local buckling as well as the lateral buckling effects are included in the analysis. The analytical model is developed based on the thin-walled beam theory, and a one-dimensional finite element model is formulated to solve the analytical model. Numerical results are compared with AISI code. It shows that the proposed model is appropriate for predicting of stress as well as deflection of the cold-formed channel section beam.

  • PDF

Development of the Simplified Analysis Model for RC Structures Considering Plastic Behavior (소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구)

  • 정연주;유영찬
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.361-371
    • /
    • 2000
  • RC structure is the composite material system combined concrete and steel showing different plastic behavior. Especially, concrete shows very complex plastic behavior. Therefore, for plastic analysis of RC structures, we have to model carefully each plastic behavior of concrete and steel member. But, because of divergency as well as difficulties and dimensions of modelling, it takes a lot of time and labor or sometimes it is impossible to perform plastic analysis of RC structures. In this study, for simplified plastic analysis of RC structures, we propose material transformation method by homogeneous and isotropic material which have the same plastic property as RC. We generate homogeneous and isotropic material showing the same moment-curvature curves (bi-linear stress-strain relation) as RC members, using bi-linear moment-curvature relation by yielding moment, yielding curvature and ultimate moment, ultimate curvature of RC member. Finally, we prove compatibility in the study by comparing plastic analysis results for various analysis models using transformed material models and RC model.

  • PDF

Analysis comparing on shape of seat back frame using FEM (FEM을 이용한 시트 백 프레임 형상에 대한 비교 해석)

  • Kim, Sung-Soo;Choi, Hae-Kyu;Kim, Sei-Hwan;Cho, Jae-Ung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.565-568
    • /
    • 2012
  • 승차감이나 안전에 관련된 부분 중 하나인 자동차 시트는 차량 주행시 전달되는 충격이나 진동을 적절하게 흡수하여 승객에게 안락성을 제공한다. 또한 이러한 여건을 만족시키면서 승객의 안전을 보장하는 충분한 강성과 강도를 가져야 한다. 자동차 시트는 2가지의 모델로 설계를 하고 구조 해석을 하였다. 그 결과, 시트 백프레임의 모델 (b)가 (a)보다 적은 변형량과 피로 수명을 보였고. 모델의 중앙에 해당되는 허리부분에서 가장 많은 변형량과 파손 가능성을 보였다. 고유진동수를 적용한 진동해석에서, 모델(a)의 경우는 모델의 바깥쪽에서 안쪽으로 변형이 되었고, 모델(b)의 경우는 모델의 안쪽에서 바깥쪽으로 변형이 되었다. 전반적으로 모든 면에서 모델(b)가 (a)보다 구조적으로 안전하다고 사료된다.

  • PDF

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Analysis Model of Corrugated Steel Plates for Soil-Metal Box Culverts (지중강판 박스구조물을 위한 파형강판 해석 모델)

  • Choi, Dongho;Lee, Jongsun;Na, Hosung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.5-18
    • /
    • 2010
  • In this paper, a 3-dimensional stiffened plate model for soil-metal box structures is proposed. 3-dimensional stiffened plate model is enable to model corrugated steel plates of soil metal box culverts considering section modulus and section properties of longitudinal and horizontal direction from a corrugated steel plate. Loading conditions which causes maximum displacement and maximum moment according to the step construction stages(a back filling to the top of the plate, a back filling to the maximum depth of cover, and loading of live loads) was applied and the behaviors of the soil metal box culverts was analyzed. Analysis results of 3-dimensional stiffened model were compared with those of 2-dimensional model, 3-dimensional equivalent plate model and 3-dimensional corrugated plate model. As results, the behaviors of 2-dimensional model and 3 dimensional equivalent model are different from 3-dimensional corrugated plate model but the result of 3-dimensional stiffened model has good agreement with that of 3-dimensional corrugated plate model.

The Design/Analysis of High Resolution LEO EO Satellite STM (지구저궤도 고정밀 관측위성 구조 및 열 개발모델 설계/해석)

  • Kim, Jin-Hee;Kim, Kyung-Won;Lee, Ju-Hun;Jin, Ik-Min;Youn, Kil-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.99-104
    • /
    • 2005
  • The major role of a spacecraft structure is to keep and support the spacecraft safely in all the launch environment, on-orbit condition and during ground-transportation and handling. In a satellite development, a structural and thermal model (STM) is developed for two goals ; demonstration of a structural and a thermal stability. In the structure point of view, STM is used to verify the static/dynamic characteristics of structure in the initial stage of development. In this paper, the structure design/analysis of high resolution LEO earth observation satellite STM is described. Also, a low level sine vibration test is performed and compared to the results of finite element analysis.

Micro/nano analysis model for prediction of mechanical properties of the nanocomposite considering nano-particle size (나노입자 크기를 고려한 나노복합체의 역학적 특성 예측을 위한 마이크로/나노 해석 모델)

  • Kim, Bong-Rae;Yang, Beom-Joo;Lee, Haeng-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.116-118
    • /
    • 2011
  • 일반적으로 나노입자의 크기는 나노복합체의 역학적 특성에 상당한 영향을 미친다. 이에 본 연구에서는 나노입자 크기를 고려한 나노복합체 재료 구성모델 (Kim et al., 2011)을 소개하고자 한다. Kim et al. (2011)에 의해서 나노입자 크기효과를 위한 Size-dependent Eshelby tensor가 미세역학 모델에 적용되었으며, 나노스케일 해석과 함께 다양한 수치해석을 수행하였다. 특히, 본 연구에서는 이를 활용하여 $SiO_2$/Epoxy 나노복합체의 역학적 특성을 예측해 보았다.

  • PDF

Development of an Evaluation Method for the Compressive-Bending Plastic Buckling Capacity of Pipeline Steel Tube (라인파이프 강관의 압축-휨 좌굴 성능 평가 기법 개발)

  • Zi, Goang-Seup;Lee, Seung-Jung;Yoon, Young-Cheol;Hwang, Sang-Soo;Cho, Woo-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.613-616
    • /
    • 2010
  • 본 논문에서는 라인파이프 강관의 압축-휨 좌굴 성능 평가 기법을 개발하기 위해 비선형 유한요소해석을 사용하였다. 고강도 강재의 연성거동을 모사하기 위해 범용 유한요소해석 프로그램인 ABAQUS의 사용자 재료모델을 사용하여 GTN(Gurson-Tvergaad-Needleman) 모델을 작성하였다. 실험결과와의 비교를 통해 재료모델상수를 결정하였으며 압축-휨 좌굴 실험의 모사에 사용하였다. 압축-휨 좌굴 성능 평가는 비선형 유한요소해석의 결과로부터 얻어진 한계압축변형률과 최대휨모멘트를 기준으로 수행될 수 있다. 개발된 성능 평가 기법은 고강도 강재를 이용한 라인파이프의 설계 시 대변형 거동 분석에 유용하게 사용될 수 있다.

  • PDF

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.