• Title/Summary/Keyword: 구조적성능

Search Result 9,764, Processing Time 0.043 seconds

Design and Implementation of a Real-time Bio-signal Obtaining, Transmitting, Compressing and Storing System for Telemedicine (원격 진료를 위한 실시간 생체 신호 취득, 전송 및 압축, 저장 시스템의 설계 및 구현)

  • Jung, In-Kyo;Kim, Young-Joon;Park, In-Su;Lee, In-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.4
    • /
    • pp.42-50
    • /
    • 2008
  • The real-time bio-signal monitoring system based on the ZigBee and SIP/RTP has proposed and implemented for telemedicine but that has some problems at the stabilities to transmit bio-signal from the sensors to the other sides. In this paper, we designed and implemented a real-time bio-signal monitoring system that is focused on the reliability and efficiency for transmitting bio-signal at real-time. We designed the system to have enhanced architecture and performance in the ubiquitous sensor network, SIP/RTP real-time transmission and management of the database. The Bluetooth network is combined with ZigBee network to distribute traffic of the ECG and the other bio-signal. The modified and multiplied RTP session is used to ensure real-time transmission of ECG, other bio-signals and speech information on the internet. The modified ECG compression method based on DWLT and MSVQ is used to reduce data rate for storing ECG to the database. Finally we implemented a system that has improved performance for transmitting bio-signal from the sensors to the monitoring console and database. This implemented system makes possible to make various applications to serve U-health care services.

Examination of the Characteristics of Mortar Mixed with Boron Compounds Presenting Various Levels of Alkalinity (다양한 알칼리도를 가진 붕소화합물이 혼입된 모르타르의 특성 검토)

  • Lee, Binna;Lee, Jong-Suk;Min, Jiyoung;Lee, Jang Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • This study examines the characteristics of mortar mixed with various boron compounds. The adapted boron compounds, classified into acid, slightly alkaline and strongly alkaline with respect to the value of the pH are acid-based boron (AA), low-alkaline-based boron (AB), and high-alkaline-based boron (HB). The pH test, setting test and compressive strength test are performed to evaluate the physical and chemical properties of mortar, and SEM imaging is conducted to analyze the microstructure of mortar. The measured pH shows that the specimens mixed with boron compounds have lower pH than the basic mortar without boron and that loss of pH occurs according to time. The setting test reveals that the initial and final setting times of the specimens mixed with boron compounds occur later than the basic mortar, which disagrees slightly with the previous literature stating that the setting time can be shortened according to the alkalinity. From the compressive strength test and SEM imaging results, it is recommended to determine the optimal content of boron considering type and composition of the boron compounds.

The Effect of Calcination Temperature on the Layered Li1.05Ni0.9Co0.05Ti0.05O2 for Lithium-ion Battery (리튬이온전지용 층상 Li1.05Ni0.9Co0.05Ti0.05O2에 대한 소성 온도의 영향)

  • Ko, Hyoung Shin;Park, Hyun Woo;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.718-724
    • /
    • 2018
  • In this study, the $Ni_{0.9}Co_{0.05}Ti_{0.05}(OH)_2$ precursor was prepared by the concentration gradient co-precipitation method. In order to overcome the structural change due to oxygen desorption in the cathode active material with high nickel content, the physical and electrochemical analysis of the cathode active material according to the calcination temperature were investigated. Physical properties of $Li_{1.05}Ni_{0.9}Co_{0.05}Ti_{0.05}O_2$ were analyzed by FE-SEM, XRD and TGA. The electrochemical performance of the coin cell using a cathode active material and $LiPF_6$(EC:EMC=1:2 vol%) electrolyte was evaluated by the initial charge/discharge efficiency, cycle retention, and rate capabilities. As a result, the initial capacity and initial efficiency of cathode materials were excellent with 244.5~247.9 mAh/g and 84.2~85.8% at the calcination temperature range of $750{\sim}760^{\circ}C$. Also, the capacity retention exhibited high stability of 97.8~99.1% after 50cycles.

A Mode Switching Protocol between RVOD and NVOD for Efficient VOD Services (효율적인 VOD 서비스를 위한 RVOD와 NVOD간의 전환 프로토콜)

  • Kim, Myoung-Hoon;Park, Ho-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.227-238
    • /
    • 2008
  • Recently, as network environment has broadened, the demands on VOD have been increased. The VOD services can be categorized into two types, RVOD and NVOD. Practical VOD services adopt one of them exclusively. Since a method using only one of RVOD and NVOD is not able to deal with frequently variable demand of clients, it leads to a result of overload on a server and a waste of server bandwidth. The efficiency of the network resource usage becomes lower. Hence this paper presents a study on the protocol for efficient VOD services. We propose a new protocol appliable for the existing VOD service algorithm, analyze its performance through simulation, and developed server/client systems applying the new protocol. We propose a mode switching protocol combined with protocols used in RVOD and NVOD. The proposed protocol is not able only to control both RVOD and NVOD but also to change the mode between RVOD and NVOD. As a result of using the proposed protocol to meet frequently variable demand, server bandwidth can be used efficiently. Especially, it can be applied to the existing VOD service algorithms. Therefore, we expect that the proposed protocol in this paper will be widely used in emerging VOD markets.

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.

Preparation of Polyurushiol (PUOH) Using Urushiol and Property of LDPE / PUOH Composite Films (우루시올을 활용한 폴리우루시올(PUOH)제조 및 LDPE/PUOH 복합필름 특성에 관한 연구)

  • Kim, Dowan;Kim, Insoo;Seo, Jongchul;Seo, Jungsang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.546-553
    • /
    • 2012
  • Urushiol extracted from lacquer tree exhibits good thermal stabilities as well as antimicrobial andantioxidant properties. However, it has been known that the urushiol derivates bring out allergy. In this study, polyurushiol (PUOH) powders were successfully synthesized for the safe and convenient handling of allergic urushiol. First, the as-synthesized PUOH was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), thermal gravimetric analyzer (TGA), antioxidant test and antimicrobial test. And then, six different LDPE/PUOH composite films were prepared via a twin screw extruder system and investigated their feasibility to use as active packaging materials. Their chemical structures, morphology, thermal optical and antimicrobial properties of the LDPE/PUOH composite films were investigated as a function of PUOH contents. FTIR and SEM results showed that LDPE/PUOH composite films have a weak interfacial interaction and poor dispersion with a high PUOH loading. The thermal properties increased up to 3 wt% as the content of PUOH increases. Compared to the pure LDPE films, LDPE/PUOH composite films are more effective in the UV absorbance and antibacterial activity against E. coli. To maximize the performance of LDPE/PUOH compositefilms as the packaging materials, further researches are required to enhance the dispersion of PUOH powders in the LDPE matrix.

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation (Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응)

  • Lee, Chanmin;Jeon, Yukwon;Hwang, Ho Jung;Ji, Yunseong;Kwon, Ohchan;Jeon, Ok Sung;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.584-588
    • /
    • 2019
  • The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.

An Object Selection Method through Adaptive Casting in Immersive Virtual Reality (몰입 가상현실 환경에서 적응형 캐스팅을 통한 객체 선택 방법)

  • Lee, JunSong;Lee, Jun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.666-673
    • /
    • 2019
  • In the immersive virtual reality environment, we can select and manipulate various virtual objects. in order to select a virtual object, we generally use Ray-casting method that fires a virtual line in user's view and selects an object when the line and the object match, or Cone-casting method that is widely used to select multiple objects at the same time. However, since the virtual objects used in CAD are composed of small and complex objects in detail, when selecting an object in the user's view by existing methods, there occurs a ambiguity problem that needs additional realignment operation even though an object is selected as a group. in this paper, even if a virtual object is composed of several small virtual objects, it calculates the spatial and logical relationship among objects and expands or shrinks desired objects, so that the user can quickly and accurately select a desired object. in order to evaluate the proposed method, performance comparison were performed using Our and Ray-Casting and Cone-Casting methods. Experimental results show that the proposed method has the fastest speed and the highest accuracy when selecting the desired objects.

A Study on Backup PNT Service for Korean Maritime Using NDGNSS (NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구)

  • Han, Young-Hoon;Lee, Sang-Heon;Park, Sul-Gee;Fang, Tae-Hyun;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.42-48
    • /
    • 2019
  • The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.