• Title/Summary/Keyword: 구조재

Search Result 7,109, Processing Time 0.031 seconds

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • 복합재 적층판은 중량에 비해 높은 강성과 강도가 요구되는 공학의 다양한 분야에서 매우 유용하다. 보강섬유 복합재의 공학적 활용이 활발해지고, 중량의 감소화가 설계의 중요한 목적이 됨으로써, 근래 복합재 구조물들의 최적화 설계의 중요성이 대두되고 있다. 그러나 복합재 적층 구조물 재료의 비등방성에 의해 해석과 설계가 매우 어렵다. 본 연구에서는 수치적 최적화 방법과 유한요소법을 이용하여 보강섬유 복합재의 최적설계를 하였다. 복합재 적층판으로 이루어진 개단면 보에 있어서 보강섬유의 다양한 적층방향에 대한 거동의 영향을 규명하였다.

  • PDF

Study on Design, Manufacturing and Test Evaluation using Composite Materials of Vertical Axis Wind Turbine Blade (수직축 풍력 블레이드의 복합재 적용 설계, 제작 및 시험 평가 연구)

  • Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.58-63
    • /
    • 2018
  • This work dealt with the design and manufacturing of composite blades of a vertical axis wind turbine system. In this work, aerodynamic and structural designs of sandwich composite blades for a vertical axis wind turbine system were performed. First, the aerodynamic and structural design requirements of the composite blades were investigated. After the structural design was complete, a structural analysis of the wind turbine blades was performed using the finite element analysis method. It was performed with the stress and displacement analysis at the applied load condition. A design modification for the structurally weak part was proposed as a result of the structural analysis. Through another structural analysis, it was confirmed that the final designed blade structure is safe.

Development of Concurrent Engineering System for Design of Composite Structures (복합재 구조물의 설계를 위한 동시공학 시스템의 개발)

  • ;;;H.T.Hahn
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.43-52
    • /
    • 1999
  • This paper explains the development of a concurrent engineering system for the rlesign of composite structures. The concurrent engineering system is developed to meet the demand for the better quality products with lower production cost and time. In this study, to compose the architecture of concurrent engineering system, the commercial and noncommercial programs related to design and analysis of composite structures are surveyed and classified. The concurrent engineering system is including various design modules such as design/analysis of composite structures using CLPT and FEM, buckling and post bucking analysis, thermo-elastic analysis of carbon-carbon composite, and optimum design using expert system and genetic algorithm. For the integration and management of softwares, the concurrent engineering system is realized by Microsoft visual $C++{^\circledR}$ that provide multi-tasking and graphic user interface environment.

  • PDF

Finite Element Analysis for the Design of Fiber Reinforced Metal Cylinder (강/복합재 이중구조 실린더 설계를 위한 유한요소 해석)

  • Kim, Tae-Hwan;Kim, Wie-Dae;Jeong, Chul-Gon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • This paper describes the design of dual-structured and thick-walled cylinder made of composites and special steel. The structure of special steel and composites reduce the weight of a product maintaining its property which is proper to the characteristics. Hence they are used in the fields, such as various ground weapons, aerospace and sports industries, where high elasticity and low weight are required. Thus in this study, the analysis was conducted to find the most proper composite application method changing its types and angle of laminates for the design. Through the comparison of the results, we suggest the method for composite application which is the most appropriate to the designing purpose of this study.

Measuring Software Reusability for Flat Panel Display System with Real-Time Constraints (실시간 특성을 지닌 평면 디스플레이 시스템 소프트웨어 재사용성 측정)

  • Lee, Jong-In;Jeon, Seung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.681-684
    • /
    • 2003
  • 정보 가전 분야에 있어서 급속한 기술 발전으로 인해 하루가 다르게 새로운 기능이 추가됨에 따라 내장형 시스템 소프트웨어의 크기 및 복잡도 또한 함께 증가하고 있고 이를 개발하고 유지보수 하는데 있어서도 막대한 비용과 노력이 요구된다. 이를 해결하기 위한 방안으로 소프트웨어의 재사용성을 높이기 위한 노력이 이어지고 있다. 본 논문에서는 실시간 제약 특성을 지닌 평면 디스플레이 시스템 소프트웨어의 재사용성을 높이기 위하여 기존 내장형 시스템 소프트웨어에서 사용되던 순차적 구조에서 탈피하여 마이크로 커널 기반 태스크 구조를 제안하고 각각의 구조에 따른 소프트웨어의 재사용성을 측정하기 위한 기준(Metrics)과 그 측정 결과를 통하여 제안된 구조가 재사용에 적합함을 보이고자 한다.

  • PDF

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

Health Monitoring in Composite Structures using Piezoceramic and fiber Optic Sensors (압전세라믹 센서와 광섬유 센서를 이용한 복합재 구조물의 건전성 모니터링)

  • Kim, C.G.;Sung, D.U.;Kim, D.H.;Bang, H.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.445-454
    • /
    • 2003
  • Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this study, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors.

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.

Static Test of a Composite Wing with Damage Tolerance Design (손상 허용 설계를 적용한 복합재 날개의 정하중 시험)

  • Park, Min-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.471-478
    • /
    • 2018
  • Static tests of the composite wing structure were performed to verify damage tolerance design. Both 5 cases of DLLT and 3 cases of DULT were completed to meet requirements for static strength. After inducing BVID and open hole damages on the critical areas of the composite wing based on associated regulations, the DULT and fracture test were performed. In major wing parts, the measured strains and displacements agreed well with those of structural analysis. The initial structural fracture occurred at the area having minimum margin of safety as expected by analysis. As a result, it was confirmed that results from analytic model and strength evaluation were similar to behaviors of the composite wing structure.