• Title/Summary/Keyword: 구조신뢰론

Search Result 227, Processing Time 0.025 seconds

破壞靭性 및 그 評價法

  • 김정규
    • Journal of the KSME
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 1981
  • 근년 산업의 발달에 따른 재료의 다양성때문에 구조물의 안전성 확보및 신뢰성 향상을 위하여 사용재료의 파괴방지에의 연구의 중요성이 종래에 비해서 한층 더 높아지고 있으며, 현재까지 행하여지고 있는 이들 연구를 대별하면 다음의 3가지 분야로 나눌 수 있다. 즉 제 1 은 순수형 태에서의 파괴의 본질을 결정구조나 전위론등에 기초를 두고 물성론적 입장에서 논하려고 하는 분야, 제 2 는 재료가 가진 야금학적 인자(화학성분, 미시조직인자 등)가 파괴에 미치는 영향을 미시조직학적 관점으로부터 취급하는 분야, 제 3 은 재료를 보다 거시적으로 보아서 균일한 탄 소성체로서 취급하고, 주로 역학적 관점에서 규명하는 파괴역학분야이다. 특히 20수년간 비약적인 진보를 가져온 파괴역학의 수법은 구조물의 불안정파괴에 대한 안전확보라는 견지에서 커다란 성과를 가져왔다. 파괴역학에 있어서의 흥미대상은 예나 지금이나 파괴인성(Fracture Toughness )의 문제에 향해져 있다. 본강좌에서는 파괴역학및 파괴인성의 기본적 개념에 대하여 설명함과 동시에 파괴인성의 평가법에 대해서 기술한다.

  • PDF

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

The Reliability-Based Probabilistic Structural Analysis for the Composite Tail Plane Structures (복합재 미익 구조의 신뢰성 기반 확률론적 구조해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.93-100
    • /
    • 2012
  • In this paper, the deterministic optimal design for the tail plane made of composite materials is conducted under the deterministic loading condition and compared with that of the metallic materials. Next, the reliability analysis with five random variables such as loading and material properties of unidirectional prepreg is conducted to examine the probability of failure for the deterministic optimal design results. The MATLAB programing is used for reliability analysis combined with FEA S/W(COMSOL) for structural analysis. The laminated composite is assumed to the equivalent orthotropic material using classical laminated plate theory. The response surface methodology and importance sampling technique are adopted to reduce computational cost with satisfying the accuracy in reliability analysis. As a result, structural weight of composite materials is lighter than that of metals in deterministic optimal design. However, the probability of failure for the deterministic optimal design of the tail plane structures is too high to be neglected. The sensitivity of each variable is also estimated using probabilistic sensitivity analysis to figure out which variables are sensitive to failure. The computational cost is considerably reduced when response surface methodology and importance sampling technique are used. The study of the computationally inexpensive method for reliability-based design optimization will be necessary in further work.

The feasibility study of the application of PRA(probabilistic reliability assessment) at the practical operational planning task (계통운영분야에 확률론적 신뢰도 평가 적용 가능성에 관한 연구)

  • Choi, H.S.;Song, T.Y.;Rju, H.K.;Jeon, D.H.;Kyak, N.H.;Choi, J.S.;Jeong, S.H.;Kwon, J.J.;Park, J.J.;Yoon, Y.T.;Lee, H.C.;Cha, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.50-51
    • /
    • 2007
  • 과거 단일 회사로 구성된 전력산업 체제하에서의 신뢰도에 대한 인식과 중요성들이 전력시장과 경쟁이 도입된 다각화된 이해 주체들 이 존재하는 현행의 국내 전력산업 구조에서는 서로 다른 양상을 띄고 변화하고 있다. 전원 및 송?변전 시설계획에서부터 계통운영 계획 및 실시간 급전에 이르기까지 연속선상의 계통운영 업무에 있어 전력공급의 안정성 확보와 더불어 보다 합리적이고 효율적인 또는 경제적인 계획과 운영에 대한 요구(Needs)가 기존의 결정론적인 신뢰도 평가의 다각적 접근 즉, 확률론적인 신뢰도평가 기법을 개발하게 하였으며, 이에 미국 전력중앙연구소(EPRI)의 PRA(Probabilistic Reliability Assessment) S/W를 도입하여 실제 계통운영의 단위업무와 접목하여 리스크를 고려한 계통안전도평가 구현의 잠재적 가능성과 극복해야 할 한계를 파악하였다.

  • PDF

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.

Comparative Study on the Applicability of Point Estimate Methods in Combination with Numerical Analysis for the Probabilistic Reliability Assessment of Underground Structures (수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성에 관한 비교 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • Point estimate method has a less accuracy than Monte Carlo simulation that is usually considered as an exact probabilistic method, but this method still remains popular in probability-based reliability assessment in geotechnical and rock engineering, because it significantly reduce the number of sampling points and produces the statistical moments of a performance function in a reasonable accuracy. In the present study, we investigated the accuracy and applicability of point estimate methods proposed by Rosenblueth and Zhou & Nowak by comparing the results of these two methods with those of Monte Carlo simulations. The comparison was carried out for the problem of a lined circular tunnel in an elastic medium where an closed-form analytical solution is given. The comparison results showed that despite the non-linearity of the analytical solution, the statistical moments calculated by the point estimate methods and the Monte Carlo simulations agreed well with an average error of roughly 1-2%. This average error demonstrates the applicability of the two point estimate methods for the probabilistic reliability assessment of underground structures in combination with numerical analysis.

A Search on building process of Trust in voluntary association in the community - A Subject of Expanding of Social Welfare Services - (지역사회 자발적 결사체의 신뢰형성 탐색 - 사회복지서비스 확대 시대의 과제 -)

  • Choi, Jong Hyug;Yu, Young Ju;Kim, Hyo Jung
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.3
    • /
    • pp.135-162
    • /
    • 2010
  • The Purpose of this study is to get basic material about voluntary association in local community and its utilization. In order to achieve the purpose of this study, it was considered that trust of social capital plays a leading part in voluntary association to maintain or strengthen its role and activities. For this reason we attempt to find the process of trust building in voluntary association. The revised ground theory that is complementary weaknesses of ground theory is used in this study and in 11months, four times researches have investigated. As a result, it was analyzed that the structure of building trust can be categorized into three structure, building up relationship, dynamic interaction and structural stabilization in voluntary association. In the space that is structured spatially and temporal, role, activity, accomplishment, attitude, conflict and environment acted as basic attributes. These attributes can be found in every building process of trust and influence on continuance and growth of voluntary association. The fact that this study offers in-depth understanding of voluntary association and empirical directivity regarding the community welfare services is of great significant.

Reliability Analysis and Evaluation of Partial Safety Factors for Wave Run-up (처오름에 대한 신뢰성 해석 및 부분안전계수 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.355-362
    • /
    • 2008
  • A reliability model of Level II AFDA is proposed to analyze the wave run-up occurring by the interaction of incident waves and sloped coastal structures. The reliability model may be satisfactorily calibrated by Level III Monte-Carlo simulation. Additionally, the partial safety factors of random variables related to wave run-up can be straightforwardly evaluated by the inverse-reliability method that use influence coefficients and uncertainties of random variables, and target probability of failure. In particular, a design equation for wave run-up is derived in the same form as that of deterministic design method so that the reliability-based design method of Level I may be applied easily. Finally, it is confirmed that results redesigned by the reliability-based design method of Level I with partial safety factors suggested in this paper are satisfactorily compared with results of CEM(2006) as well as those of Level II AFDA.

Assessment of the Internal Pressure Fragility of the Wolsung Unit 1 Containment Building using Nonlinear Finite Element Analysis (비선형 유한요소 해석을 이용한 월성1호기 격납건물의 내압취약도 평가)

  • Hahm, Dae-Gi;Choi, In-Kil;Lee, Hong-Pyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.653-656
    • /
    • 2010
  • 월성 1호기 격납건물에 대하여 극한내압하중에 대한 확률론적 취약도 평가를 수행하였다. 격납건물 성능의 불확실성은 가동중 검사 결과를 통해 얻어진 재료 물성치 중앙값과 텐던 긴장력 중앙값을 적용하여 고려하였다. 격납건물은 개구부를 고려하여 3차원 유한요소로 모델링하였으며, 확률론적 취약도 평가를 위하여 대규모의 비선형 유한요소 해석 모델을 적용하기에 적합한 효율적인 취약도 평가 기법을 개발하였다. 월성 1호기 격납건물에 대한 취약도 평가 결과, 벽체 중단부가 극한내압발생으로 인한 방사능물질 누출에 가장 취약한 것으로 나타났으며, 중앙값 성능은 약 55psi, 고신뢰도 저파괴 파괴확률값인 HCLPF(High Confidence Low Probability of Failure)는 약 29psi를 나타내었다.

  • PDF

Bayesian Reliability Analysis Using Kriging Dimension Reduction Method(KDRM) (크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석)

  • An, Da-Un;Choi, Joo-Ho;Won, Jun-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.275-280
    • /
    • 2008
  • A technique for reliability-based design optimization(RBDO) is developed based on the Bayesian approach, which can deal with the epistemic uncertainty arising due to the limited number of data. Until recently, the conventional REDO was implemented mostly by assuming the uncertainty as aleatory which means the statistical properties are completely known. In practice, however, this is not the case due to the insufficient data for estimating the statistical information, which makes the existing RBDO methods less useful. In this study, a Bayesian reliability is introduced to take account of the epistemic uncertainty, which is defined as the lower confidence bound of the probability distribution of the original reliability. In this case, the Bayesian reliability requires double loop of the conventional reliability analyses, which can be computationally expensive. Kriging based dimension reduction method(KDRM), which is a new efficient tool for the reliability analysis, is employed to this end. The proposed method is illustrated using a couple of numerical examples.