• Title/Summary/Keyword: 구조물 안전진단

Search Result 546, Processing Time 0.02 seconds

Relationship between Half Cell Potential and Corrosion Amount Considering Saturated Cover depth and W/C ratios in Cement Mortar (습윤상태의 피복두께와 물-시멘트비를 고려한 반전위와 철근 부식량의 상관성)

  • Ryu, Hwa-Sung;Park, Jae-Sung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.19-26
    • /
    • 2017
  • Concrete is a construction material with porous media and corroded steel inside affects negatively to durability and structural safety. This study aims a derivation of quantitative relationship between measured HCP (Half Cell Potential) and corrosion amount considering cover depth and W/C (water to cement) ratio. For the work, cement mortar specimens with 3 different W/C ratios and 4 different cover depths are prepared, HCPs are measured with 3 different corrosion level. HCP measurement significantly increases in the saturated condition and linear relationship is observed between corrosion level and acceleration period. With increasing corrosion level and W/C ratio, and decreasing cover depth, HCP measurement increases. Considering total corrosion level and HCP measurements, relatively low COV(Coefficient of Variation) of 0.67 is evaluated through multi-linear regression analysis, however higher COVs over 0.90 can be obtained considering level of HCP measurement. In the room condition, corrosion level can be evaluated through measured HCP in the given conditions of cover depth, W/C ratio. diameter of steel inside.

Analysis of Magnetic Flux Leakage based Local Damage Detection Sensitivity According to Thickness of Steel Plate (누설자속 기반 강판 두께별 국부 손상 진단 감도 분석)

  • Kim, Ju-Won;Yu, Byoungjoon;Park, Sehwan;Park, Seunghee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • To diagnosis the local damages of the steel plates, magnetic flux leakage (MFL) method that is known as a adaptable non-destructive evaluation (NDE) method for continuum ferromagnetic members was applied in this study. To analysis the sensitivity according to thickness of steel plate in MFL method based damage diagnosis, several steel plate specimens that have different thickness were prepared and three depths of artificial damage were formed to the each specimens. To measured the MFL signals, a MFL sensor head that have a constant magnetization intensity were fabricated using a hall sensor and a magnetization yoke using permanent magnets. The magnetic flux signals obtained by using MFL sensor head were improved through a series of signal processing methods. The capability of local damage detection was verified from the measured MFL signals from each damage points. And, the peak to peak values (P-P value) extracted from the detected MFL signals from each thickness specimen were compared each other to analysis the MFL based local damage detection sensitivity according to the thickness of steel plate.

Construction of Faster R-CNN Deep Learning Model for Surface Damage Detection of Blade Systems (블레이드의 표면 결함 검출을 위한 Faster R-CNN 딥러닝 모델 구축)

  • Jang, Jiwon;An, Hyojoon;Lee, Jong-Han;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.80-86
    • /
    • 2019
  • As computer performance improves, research using deep learning are being actively carried out in various fields. Recently, deep learning technology has been applying to the safety evaluation for structures. In particular, the internal blades of a turbine structure requires experienced experts and considerable time to detect surface damages because of the difficulty of separation of the blades from the structure and the dark environmental condition. This study proposes a Faster R-CNN deep learning model that can detect surface damages on the internal blades, which is one of the primary elements of the turbine structure. The deep learning model was trained using image data with dent and punch damages. The image data was also expanded using image filtering and image data generator techniques. As a result, the deep learning model showed 96.1% accuracy, 95.3% recall, and 96% precision. The value of the recall means that the proposed deep learning model could not detect the blade damages for 4.7%. The performance of the proposed damage detection system can be further improved by collecting and extending damage images in various environments, and finally it can be applicable for turbine engine maintenance.

Development and Evaluation of Hollow-head Precast Reinforced Concrete Pile (말뚝머리 중공 프리캐스트 철근콘크리트 말뚝의 성능 평가)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • Due to the economic growth and development of construction technology, a role of foundation to resist heavy loads has been increased. In this present study to improve the structural performance of reinforced concrete pile, the precast HPC pile reinforced with rebar and filling concrete was developed and the strength of pile was predicted based on the limit state design method. The safety of HPC pile strength was evaluated by comparing with the design values. The geometry of HPC pile is a decagon cross section with a maximum width of 500 mm and a minimum width of 475 mm, and the hollow head of pile thickness is 70 mm. The inner area of the hollow head part was made as the square ribbed shape presented in the limit state design code in order to achieve horizontal shear strength between pile concrete and filling concrete. From the shear test results, it was found that the stable shear strength were secured without abrupt failure until maximum load stage despite the shear cracks was found. Shear strength is 135% and 119% higher than that of design value calculated from limit state design code. The driving test results of HPC pile according to the presence of additional reinforcement showed the outstanding crack resistance against impact loads condition. From the bending test results the flexural load between PHC pile and HPC pile was 1.51 times and 1.48 times higher than that of the design flexural load of conventional PHC pile.

A Study on the Ubiquitous Wireless Tilt Sensors's Application for Measuring Vertical Deflection of Bridge (교량의 수직처짐 측정을 위한 유비쿼터스 무선경사센서 활용연구)

  • Jo, Byung Wan;Yoon, Kwang Won;Kim, Young Ji;Lee, Dong Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.116-124
    • /
    • 2011
  • In this study, a new method to estimate the bridge deflection is developed by using Wireless Tilt Sensor. Most of evaluations of structural integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structure, especially bridges. In the past, Because of the lack of appropriate methods to measure the deflection curve of bridges on site, the measurement of deflection had been done restrictly within just a few discrete points along the bridge. Also the measurement point could be limited to locations installed with displacement transducers. So, in this study, the deflection of the structure was measured by wireless tilt sensor instead of LVDT(Linear Variable Differential Transformer). Angle change of tilt sensor shows structural behavior by the change of the resistor values which is presented to voltage. Moreover, the maximum deflection was calculated by changing the deflection angle which was calculated as V(measured voltage) ${\times}$F(factor) to deflection. The experimental tests were carried out to verify the developed deflection estimation techniques. Because the base of tilt measuring is the gravity, uniform measurement is possible independent of a measuring point. Also, measuring values were showed very high accuracy.

Fatigue Evaluation of a Steel Bridge in Service through Stress History Measurement and Consideration of Stress Category (공용중인 교량의 응력이력 계측 및 응력범주를 고려한 피로평가)

  • Na, Sung-Ok;Kwon, Min-Ho;Cha, Cheol-Jun;Kim, In-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2014
  • The proper stress history measurement should be conducted in order to examine the accurate cause of fatigue cracks or the fatigue safety in the steel bridge. Only one strain gauge is generally installed in the field for the stress history examination because of the field circumstances, economic feasibility, workability, and so on. However, this method may not consider the actual size of the specific structure, the gauge length, and the affect of stress concentration in the welded joint. In addition, it is difficult to apply for the stress analysis. Therefore, this study suggests improvements that are a great number of gauge installations, the gauge location adjustment, and the use of the minimum length gauge. It is drived the correlative equation of strain for the distance between the welding toe and the strain gauge installation, and compare correlative equation with equation of IIW. Also, this study could estimate the remaining life and fatigue damage of bridge in service by selecting the suitable stress category. In conclusion, it is possible to understand the member which is high in the fatigue cracks, and the quantitative relations between the welding toe and the strain gauge installation distances. The proposed approach in this study can make an more accurate fatigue damage and a remaining life prediction so that the improved method should be applied in measuring the strain of bridges from now on.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

Calculation of Crack Width of the Top Flange of PSC Box Girder Bridge Considering Restraint Drying Shrinkage (구속 건조수축을 고려한 PSC BOX 거더교 상부플랜지 균열폭 산정)

  • Young-Ho Ku;Sang-Mook Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • The PSCB girder bridge is a closed cross-section in which the top and bottom flanges and the web are integrated, and the structural characteristics are generally different from the bridges in which the girder and the floor plate are separated, so a maintenance plan that reflects the characteristics of the PSCB girder bridge is required. As a result of analyzing damage types by collecting detailed safety diagnosis reports of highway PSCB girder bridges, most of the deterioration and damage occurring during use is concentrated on the top flange. In particular, cracks in the bridge direction on the underside of the top flange occurred in about 70 % of the PSCB girder bridges to be analyzed, and these cracks were judged to be caused by indirect loads such as heat of hydration and drying shrinkage rather than structural cracks caused by external loads. In order to improve durability and reduce maintenance costs of PSCB girder bridges in use, it is necessary to control restraint drying shrinkage cracks from the design stage. Therefore, in this paper, the cracks caused by drying shrinkage under restraint, which is the main cause of cracks under the flanges of the top part of the PSCB girder bridge, were directly calculated using the Gilbert Model, and the influencing factors such as the amount of reinforcing bars, diameter and spacing of reinforcing bars were analyzed. As a result of the analysis, it was found that the crack width caused by restraint drying shrinkage exceeded the allowable crack width of 0.2 mm for reinforcing bars with a reinforcing bar ratio of 0.01 or less based on the H16 reinforcing bar and a reinforcing bar with a diameter greater than H19 based on the reinforcing bar ratio of 0.01. Finally, based on the results of the crack width review, a method for controlling the crack width of the top flange of the PSCB girder bridge was proposed.

Development of Measuring Method for Bridge Scour and Water Level Using Temperature Difference Between Medium Interfaces (매질 경계면의 온도 변화를 이용한 교량 세굴 및 수위 측정방법 개발)

  • Joo, Bong-Chul;Park, Ki-Tae;You, Young-Jun;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.126-133
    • /
    • 2014
  • The main source of bridge destruction is due to scour. The bridge scour is the result of erosive action of flowing water taking away ground materials from near the abutment or pier. Furthermore, the water level must be also monitored whiling flooding, because it dangers not only the stability of bridge itself, but the safety of bridge users. This study is intended to develop a new measuring system for bridge scour by overcoming the current limitation of scour measurement technique. This measuring system is confirmed its excellence and validity through this study. The newly developed measuring system finds the distance between the water surface and the ground surface by detecting temperature difference along the abutment vertically. The measuring mechanism for monitoring the bridge scour and water level is based on identifying the temperature difference among mediums, including air, water and ground. In order to validate the new measuring system, the lab experiments and the field tests are conducted and compared. It has been confirmed that this system can effectively measure the bridge scour and the water level by analyzing the temperature distribution between mediums and the temperature variation over time.

Vision-based Method for Estimating Cable Tension Using the Stay Cable Shape (사장재 케이블 형태를 이용하여 케이블 장력을 추정하는 영상기반 방법)

  • Jin-Soo Kim;Jae-Bong Park;Deok-Keun Lee;Dong-Uk Park;Sung-Wan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.98-106
    • /
    • 2024
  • Due to advancements in construction technology and analytical tools, an increasing number of cable-stayed bridges have been designed and constructed in recent years. A cable is a structural element that primarily transmits the main load of a cable-stayed bridge and plays the most crucial role in reflecting the overall condition of the entire bridge system. In this study, a vision-based method was applied to estimate the tension of the stay cables located at a long distance. To measure the response of a cable using a vision-based method, it is necessary to install feature points or targets on the cable. However, depending on the location of the point to be measured, there may be no feature points in the cable, and there may also be limitations in installing the target on the cable. Hence, it is necessary to find a way to measure cable response that overcomes the limitations of existing vision-based methods. This study proposes a method for measuring cable responses by utilizing the characteristics of cable shape. The proposed method involved extracting the cable shape from the acquired image and determining the center of the extracted cable shape to measure the cable response. The extracted natural frequencies of the vibration mode were obtained using the measured responses, and the tension was estimated by applying them to the vibration method. To verify the reliability of the vision-based method, cable images were obtained from the Hwatae Bridge in service under ambient vibration conditions. The reliability of the method proposed in this study was confirmed by applying it to the vibration method using a vision-based approach, resulting in estimated tensions with an error of less than 1% compared to tensions estimated using an accelerometer.