• 제목/요약/키워드: 구조물 발파해체

Search Result 70, Processing Time 0.019 seconds

Simulation of Blasting Demolition of Reinforced Concrete Structures and Ground Vibration using Finite Element Method (유한요소법을 이용한 구조물의 발파해체 붕괴거동 및 지반진동 모사에 관한 연구)

  • Choi, Joo-Hee;Jung, Jae-Woong;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.190-202
    • /
    • 2009
  • With the increasing demand for blasting demolition in urban areas, the simulation of structural collapse prior to the real blasting operation is a key process for ensuring the success and safety of the blasting demolition. The simulation of collapsing behavior of a structure is not only vital for preventing unexpected economic loss and casualties, but also helpful in minimizing public claims by precisely estimating the environmental impact resulting from the operation. This study proposes a new technique for simulation of a blast demolition using FEM based LS-DYNA codes. The technique tries to simplify the complex arrangement of reinforcing bars, and use the actual properties of the concrete and steel reinforcing bars, thereby improving the overall capability of the simulation to match well with the collapsing behavior of real-scale structures.

Case Study of Explosive Demolition for a Structure in Urban Area (Explosive Demolition of Former Sung-Nam City Hall to Construct Sung-Nam City Hospital) (도심지 구조물 발파해체 적용사례 (성남시 의료원 건립을 위한 구성남시청사 발파해체))

  • Jung, Min-Su;Song, Young-Suk;Heo, Eui-Haeng;Kim, Hyo-Jin
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • Building demolitions at urban area make some inconvenience to neighborhood through generating noises, ground vibrations, and dusts. For this reason, various methods to control such environmental impacts have been being designed and practiced. Among the methods, the use of explosive demolition is rapidly increasing because it can minimize the inconveniency as well as decrease the working time and cost. In this respect, the old Sung-Nam city hall, which was a Rahmen structure comprised of beams, slabs and columns, was decided to be demolished by explosive demolition. This paper shows that explosive demolition can be the most suitable way of removing old buildings eco-friendly, safely, and economically by showing the observation results obtained from the actual demolition operation for the Sung-Nam city hall.

A Study for Felling Impact Vibration Prediction from Blasting Demolition (발파해체시 낙하충격진동 예측에 관한 연구)

  • 임대규;임영기
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.43-55
    • /
    • 2004
  • Use term of tower style construction exceeds recently. Accordingly, according to construction safety diagnosis result, achieve removal or Improvement construction. But when work removal, must shorten shut down time. Therefore, removal method of construction to use blasting demolition of construction is very profitable. Influence construction and equipment by blasting vibration and occurrence vibration caused by felling impact. Is using disadvantageous machine removal method of construction by and economic performance by effect of such vibartion. Therefore, this research studied techniques to forecast vibartion level happened at blasting demolition and vibration reduction techniques by use a scaled model test.

Explosive Demolition of Special Structure of Soongeui Complex Stadium (숭의종합운동장 특수구조물 발파해체)

  • Suk, Chul-Gi;Park, Hoon;Kim, Nae-Hoi;Song, Young-Suk;Jung, Woo-Jin;Han, Dong-Hun
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.108-118
    • /
    • 2010
  • Soongeui complex stadium is a reinforced concrete frame structure composed of columns, slabs and beams. The stadium, however, is also a special structure because it has a tall tower of electronic display board and slabs inside its own structure which is different from the structures that had been demolished using blasting by then. Explosive demolition for the stadium was carried out from the left-hand side of the outfield stand to the right considering 2 rows of columns supporting the stand as a blasting unit. An overturning demolition method was applied to the tower of electronic display board. Water bags that played the role of multipurpose protection were applied to control the dust. As a result, the demolition project of the special structure of Soongeui complex stadium was judged to be a great success.

Blast Design for Explosive Demolition of Concrete Foundation (기초콘크리트 구조물의 발파해체를 위한 발파설계)

  • Park, Hoon;Park, Hyoung-Ki;Suk, Chul-Gi;Yi, Young-Seop;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • With the deterioration and functional loss of structures, there is an increasing demand for demolition and various demolition technologies have been developed. In case of a large-scale concrete foundation, application of some mechanical demolition techniques is limited because of the structural characteristics, and explosive demolition or explosive demolition combined with mechanical demolition is applied recently due to the effect to the surrounding environment by the ground vibration. In this study, we compared peak particle velocity of ground vibration depending on average fragment size in case of explosive demolition design for large-scale concrete foundation using the relation among specific charge, charge constant and transmitting medium constant as well as the relation between average concrete fragment size and specific charge.

Evaluation of Progressive Collapse Resisting Capacity of RC structure using the Applied Element Method (응용요소법을 이용한 철근콘크리트 구조물의 연쇄붕괴 저항성능 평가)

  • Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Progressive collapse is generally defined as a local failure of structural members occurring due to abnormal load which results in the partial collapse or total collapse of a structure. Unlike progressive collapse, explosive demolition is a method of inducing the total collapse of structure by removing all or portion of structural members. In explosive demolition the partial collapse of the structural members can be controlled at appropriate time intervals by blasting, to induce the progressive collapse of the structure and control the collapse behavior. In this study, a nonlinear dynamic analysis was carried out in order to apply the progressive collapse process to explosive demolition design of the RC structure. The occurrence of progressive collapse of analytical models was examined according to the number of floors, the removed column height and span length. For models that resisted progressive collapse, progressive collapse resisting capacity was evaluated.

Collapse Modeling of model RC Structure Using Applied Element Method (AEM을 이용한 철근콘크리트 모형 구조물의 붕괴 모델링)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Tunnel and Underground Space
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In order to analyze collapse behavior of structure containing irregular and large displacement, many numerical analyses have been conducted. In this study, using a new method, Applied Element Method (AEM) for collapse analysis of structures, collapse behavior of model RC structures Is simulated. From these simulations results, displacement of X-direction (or horizontal) and displacement of Y-direction (or vertical) is similar to that of mode) RC structures. It is confirmed that collapse behavior of structures using AEN is reliable accurately simulated with that of model RC structures.

A Case Study on Explosive Demolition of a Industrial Plant Foundation (산업용 플랜트 기초의 발파해체 시공사례)

  • Noh, You-Song;Kim, Nae-Hoi;Jang, Seong-Ok;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.22-35
    • /
    • 2021
  • The number of a industrial plant that must be demolished due to functional and structural deterioration has been increased. There is an increasing application of explosive demolition or explosive demolition combined with mechanical demolition to minimize temporal and spatial environmental hazardous factors created during the process of demolition. In this case study, to demolish the industrial plant foundation, which is a reinforced concrete structure, the explosive demolition technique was conducted. As a result of the explosive demolition, the overall crushing of plant foundation structure was satisfactory, and the explosive demolition was completed without causing any damage to surrounding facilities.

Execution Case Study on the Explosive Demolition of a Large-Section RC Special Structure (대단면 철근콘크리트 특수구조물 발파해체 시공 사례)

  • Park, Hoon;Suk, Chul-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • Recently, the number of industrial structures that must be demolished due to structural deterioration and unsatisfactory functional conditions has been increased. To minimize environmental hazardous factors created during the process of demolition, the explosive demolition method has been applied increasingly. This execution case was intended to describe an application of the explosive demolition method to the demolition of a Crusher & Screen structure, which was a large-section reinforced concrete special structure. It was deemed necessary due to its structural deterioration and unsatisfactory functional condition. Various pre-weakening processes and blasting patterns were applied to the large-section reinforced concrete members, and to reduce blasting vibration and impact vibration, time intervals were established for blasting in the same column and for blasting between blasting blocks. By applying the explosive demolition method to the demolition of a large-section reinforced concrete special structure, the explosive demolition was completed safely and efficiently, without causing any damage to surrounding facilities.