• 제목/요약/키워드: 구조건전성평가

Search Result 472, Processing Time 1.176 seconds

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Effect of the Embedded Reinforcing Bar of Specimens on the Compressive Strength of Concrete (공시체에 포함된 철근이 콘크리트 압축강도에 미치는 영향)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.552-558
    • /
    • 2016
  • Recently, the repair and reinforcement of deteriorated concrete buildings has attracted much interest. In order to accurately evaluate the safety of these existing structures, it is essential to know the strength of the concrete that they are composed of. The core drilling method is considered to be the most effective and common method of assessing the compressive strength of concrete. In general, the regulations do not permit the core specimens within reinforcing bars to be used to assess the strength of the concrete, even if the core specimens contain reinforcing bars in some cases. The purpose of this study is to investigate the effects of the reinforcement arrangement on the compressive strength of concrete, and to propose the quantitative specific standard of strength for core specimens containing reinforcements, in order to facilitate their safe inspection by repair or retrofit companies who want to evaluate the soundness of the structures. To complete this research, one type of cylinder specimen without reinforcement and 14 types of specimens with reinforcement arrangements were prepared and their compressive strength evaluated. It was found that the strength of the cylinders with reinforcement volumes of up to $50cm^3$ (about 4-ϕ13mm) was more than 80% of that of the cylinders without any reinforcement.

Structure & Installation Engineering for Offshore Jack-up Rigs

  • Park, Joo-Shin;Ha, Yeong-Su;Jang, Ki-Bok;Radha, Radha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • Jack-up drilling rigs are widely used in offshore oil and gas exploration industry. It is originally designed for use in the shallow waters less than 60m of water depth; there is growing demand for their use in deeper water depth over 150m and harsher environmental conditions. In this study, global in-place analysis of jack-up rig leg for North-sea oil well is performed through numerical analysis. Firstly, environmental conditions and seabed characteristics at the North-sea are collected and investigated measurements from survey report. Based on these data, design specifications are established and the overall basic design is performed. Dynamic characteristics of the jack-up rig for North-sea are considered in the global in-place analysis both leg and hull and the basic stability against overturning moment is also analyzed. The structural integrity of the jack-up rig leg/hull is verified through the code checks and the adequate safety margin is observed. The uncertainty in jack-up behaviour is greatly influenced by the uncertainties in the soil characteristics that determine the resistance of the foundation to the forces imposed by the jack-up structure. Among the risks above mentioned, the punch-through during pre-loading is the most frequently encountered foundation problem for jack-up rigs. The objective of this paper is to clarify the detailed structure and installation engineering matters for prove the structural safety of jack-up rigs during operation. With this intention the following items are addressed; - Characteristics of structural behavior considering soil effect against environmental loads - Modes of failure and related pre-loading procedure and parameters - Typical results of structural engineering and verification by actual measurement.

  • PDF

Numerical Studies on the Structural-health Evaluation of Subway Stations based on Statistical Pattern Recognition Techniques (패턴인식 기반 역사 구조건전성 평가기법 개발을 위한 수치해석 연구)

  • Shin, Jeong-Ryol;An, Tae-Ki;Lee, Chang-Gil;Park, Seung-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1735-1741
    • /
    • 2011
  • The safety of station structures among railway infrastructures should be considered as a top priority because hundreds of thousands passengers a day take a subway. The station structures, which have been being operated since the 1970s, are especially vulnerable to the earthquake and long-term vibrations such as ambient train vibrations as well. This is why the structural-health monitoring system of station structures should be required. For these reason, Korean government has made an effort to develop the structural health-monitoring system of them, which can evaluate the health-state of station structures as well as can monitor the vulnerable structural members in real-time. Then, through the monitoring system, the vulnerable structural members could be retrofitted. For the development of health-state evaluation method for station structures with the real-time sensing data measured in the fields, authors carried out the numerical simulations to develop evaluation algorithms based on statistical pattern recognition techniques. In this study, the dynamic behavior of Chungmuro station in Seoul was numerically analyzed and then critical members were chosen. Damages were artificially simulated at the selected critical members of the numerical model. And, the supervised and unsupervised learning based pattern recognition algorithms were applied to quantify and localize the structural defects.

  • PDF

Response Calibration for Bridges based on Statistical Quality Control Chart (통계적 품질 관리도에 기초한 교량의 응답 보정)

  • Hwang, Jin Ha;An, Seoung Su;Kim, Ju Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • This paper presents the response calibration method based on quality control range, which is established from the concept and method of statistical quality control for natural frequency ratio and response ratio. To this end, statistical analysis including descriptive statistics analysis, normality test, ANOVA were performed for response characteristics obtained from loading tests and structural analysis for more than hundred and thirty well-conditioned bridges. Suggested method is based on real structural integrity evaluation case studies and statistical quality control approach, in this respect it is expected to provide scientific criteria and systematic procedure for response calibration and load carrying capacity assessment.

Integrity evaluation of the welded structure bogie for the railway freight car (철도화차용 용접구조대차의 건전성평가에 관한 연구)

  • Hong J.S.;Ham Y.S.;Chung H.C.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.361-364
    • /
    • 2005
  • Some bogie frames manufactured in 1999, 2000 year have the fatal problem. Three or four years later, the cracked end beam among them have discovered in 2002, 2003 year. The crack situation of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment. To improve the end beam, a research of covering the whole field of welded type bogie frame was started. Main line real tests were performed at Young-Dong line. The stress of main positions for bogie frame was measured. Also up-down direction and left-right direction vibration acceleration of the bogie frame were measured. At this time the tests were performed for the three types bogie. The test result concludes that the crack cause of the end beam is not brake load but vibration at running mainly. It is estimated that the life of the improved car which end beam reinforced is safe within the car permitted life(25 years). The improvement methods of the end beam are presented by construction modification, parts modification. The integrity evaluation is inspected by analysis the real line test results, the improvement methods of the end beam.

  • PDF

Structural Integrity Evaluation of SG Tube with Surface Wear-type Defects (표면 마모결함을 고려한 증기발생기 세관의 구조건전성 평가)

  • Kim, Jong-Min;Huh, Nam-Su;Chang, Yoon-Suk;Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1618-1625
    • /
    • 2006
  • During the last two decades, several guidelines have been developed and used for assessing the integrity of a defective steam generator (SG) tube that is generally caused by stress corrosion cracking or wall-thinning phenomenon. However, as some of SG tubes are also failed due to fretting and so on, alternative failure estimation schemes are required for relevant defects. In this paper, parametric three-dimensional finite element (FE) analyses are carried out under internal pressure condition to simulate the failure behavior of SG tubes with different defect configurations; elliptical wear, tapered and flat wear type defects. Maximum pressures based on material strengths are obtained from more than a hundred FE results to predict the failure of SG tube. After investigating the effect of key parameters such as defect depth, defect length and wrap angle, simplified failure estimation equations are proposed in relation to the equivalent stress at the deepest point in wear region. Comparison of failure pressures predicted by the proposed estimation scheme with corresponding burst test data showed a good agreement.

Structure Evaluation for the Level Luffing Crane' Boom (레벨 러핑 크레인 붐에 대한 구조설계의 건전성 평가)

  • Kim, Min-Saeng;Lee, Jae-Chul;Jeong, Suk-Yong;Ahn, Sung-Hoon;Son, Jee-Won;Cho, Kwang-Je;Song, Chul-Ki;Park, Sil-Ryong;Bae, Tae-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.526-532
    • /
    • 2008
  • Structure evaluation for 70/15 $T{\times}105\;m$ LLC(Level Luffing Crane)'s boom was conducted by Finite Element Method. Boom modeled with beam element was fixed by luff rope and boom mount and was received loads from self weight, luff hoisting, traveling motion, slewing motion, and wind force, etc. These applied loads were calculated using various factors presented in the reference standards and were inputted in the analysis model after considering about the adverse conditions of LLC. In the research, deformation, stresses, buckling of boom were evaluated by ANSYS. Structural safety of boom was confirmed in the results of numerical analysis.

Inspection of Underground Slurry Wall for LNG Storage Tank (LNG 저장 탱크 지중연속벽 품질시험)

  • Kim, Young-H.;Jo, Churl-Hyun;Lim, Seong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Nondestructive testing was carried out in order to evaluate the structural integrity and construction quality of the slurry wall of the underground LNG storage tank. 9 test points were selected, and the wall thickness, rebar spacing, and compressive strength of the slurry wall were evaluated by stress wave impact-resonance method, GPR, sonic velocity, and rebound testing, respectively. As results, the wall thickness, rebar sparing and estimated compressive strength satisfy the design criteria.

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.