• Title/Summary/Keyword: 구속부재

Search Result 172, Processing Time 0.028 seconds

The elastic bucking strength of axially compressed tubular member with through-gusset connection (관통한 가셋트판이 부착된 압축 강관 부재의 탄성좌굴내력)

  • Kim, Woo-Bum;Lim, Ji-Youn
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • A tubular member holding an axially through-gusset connection is often used to transmit axial compression in a steel truss structures. The elastic buckling loads of the member is affected by the stiffness ratio($\beta$) and the length ratio(G) because of two elements with different properties. In current code, however, the strength is evaluated with an effective length factor k=0.9 without considering the above effect. Therefore this study analyzed a theoretical mechanism based on the elasticity theory and performed a finite element analysis to investigate the influence parameters on the elastic buckling strength of axially loaded member.

  • PDF

A Study on Stiffness-based Optimal Design of Tall Plane Frameworks using Composite Member (합성부재를 이용한 고층평면골조의 강성최적설계에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.77-84
    • /
    • 2004
  • This study presents an effective stiffness-based optimal technique to control quantitatively lateral drift for tall frameworks using composit member subject to lateral loads. To this end, displacement sensitivity depending on behavior characteristics of tall frameworks is established and approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Specifically, under the 'constant-shape' assumption, resizing techniqe of composite member is developed. Two types of 50 story frameworks are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

A Study of Modelling Methods Used for the Analysis on Cut-and-Cover Tunnel Lining (복개터널 라이닝 해석을 위한 모델링 기법에 관한 연구)

  • Bae, Gyu-Jin;Lee, Gyu-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • In this study, numerical analyses on cut-and-cover tunnel linings were performed using different modeling methods based on both structural and geotechnical engineering. The purpose was to find a relatively more reasonable modeling method and boundary conditions. The results of the study revealed problems associated with each modeling method and factors influencing the behavior of cut-and-cover tunnel lining. A method was proposed allowing the simulation of field condition in a more rational way. It was indicated that, under the given conditions, displacements and member forces occurring on concrete lining could be different as much as 53% depending on the type of modeling method applied; and 32% depending on the boundary conditions employed. Determination of boundary conditions properly simulating actual field conditions and verification of prediction based on instrumentation are essential for rational design and analysis.

  • PDF

An Evaluation of Plastic and Early Dry Shrinkage of Fiber Reinforced Concrete Using Recycled Aggregate (순환잔골재를 활용한 섬유 보강 콘크리트의 소성 및 초기 건조수축평가)

  • Park, Yun-Mi;Kim, Young-Duck;Kim, Young-Sun;Kim, Ho-Dong;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.937-940
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because generation quantity of construction and demolition waste concrete is greatly increased according to the rapid increasing of urban redevelopment project. On the other hand, the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate by intensification of environment influence evaluation and the shortage of river fine aggregate. but a quality of aggregate as building structure is not demonstrated. Therefore it is the objective of this study to estimate plastic and early dry shrink crack of fiber reinforced concrete using a recycled aggregate by plat-ring test and mock-up test of exposure to the air. as a result, in case of plat- ring test, developing crack is wider using recycled aggregate concrete than natural aggregate concrete, is wider using fiber reinforced concrete than non fiber. in case of mock-up test of exposure to the air, it is similar to plat-ring test.

  • PDF

Evaluation of Post-Buckling Residual Strength of H-Section Steel Column for Both Ends are Fixed Condition (양단고정 단부구속에 따른 H 형 강재기둥의 좌굴 후 잔존내력 평가)

  • Abebe, Daniel Yeshewawork;Choi, Jae Hyouk;Kim, Jin Hyang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.83-88
    • /
    • 2013
  • Progressive collapse is a chain reaction of failures propagating throughout a portion of a structure that is disproportionate to the original local failure. When column members are subjected to unexpected load (compression load), they will buckle if the applied load is greater than the critical load that induces buckling. The post-buckling strength of the columns will decrease rapidly, but if there is enough residual strength, the members will absorb the potential energy generated by the impact load to prevent progressive collapse. Thus, it is necessary to identify the relationship of the load-deformation of a column member in the progressive collapse of a structure up to final collapse. In this study, we carried out nonlinear FEM analysis and based on deflection theory, we investigated the load-deformation relationship of H-section steel columns when both ends were fixed.

Heterogeneous Simulation on Concrete Shrinkage using Meso-model (메소모델을 사용한 비균질성을 고려한 콘크리트의 수축 해석)

  • Shin, Kyung-Joon;Lee, Do-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.104-110
    • /
    • 2019
  • Shrinkage is one of typical characteristics of concrete with cement paste and aggregates. A lot of studies on this has been conducted with an assumption that the concrete is a homogeneous material. However, as shrinkage acts on only one of the components that consist of concrete, it is hard to be characterized only by the average effective properties. Therefore, in this paper, the concrete shrinkage, which is one of the typical characteristics and still has a lot of uncertainty, is simulated considering its heterogeneous properties. Using a meso model, concrete is modeled with the combination of mortar and aggregates, and the shrinkage is simulated by applying the shrinkage strain on the mortar only. According to the results, it is shown that the cracking of shrinking concrete is largely influenced by the types of aggregates and the degree of restraint. Also, the shrinkage cracking cannot be represented only by the single values such as tensile strength since the stiffness of aggregates and the degree of restraint influence the cracking.

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The hollow RC(Reinforced concrete) pier has the merit of lightweight pier compared with solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete. As a result of parameters study, the usage of a minimum necessary thickness of the internal steel tube is the most effective.

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

Ductility of Circular Hollow Reinforced Concrete Piers Internally Confined by a Steel Tube (내부 강관 보강 원형 R.C 기둥의 연성 거동 특성)

  • Han, Taek-Hee;Han, Sang-Yun;Han, Keum-Ho;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.127-137
    • /
    • 2003
  • In locations where the cost of concrete is relatively high, or in situations where the weight of concrete members is to be kept to a minimum, it may be economical to use hollow R.C. members. The ductility of circular hollow R.C. columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. In this study, moment-curvature analyses are conducted with Mander's confined concrete stress-strain relationship. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF