• Title/Summary/Keyword: 구문 관계 정보

Search Result 245, Processing Time 0.029 seconds

Sentential Object Orient Model And Relationship Design For Humane Software Developement (인간중심의 소프트웨어 개발을 위한 구문 객체 모델과 관계 디자인)

  • John, Young-Jun;Choi, Yong-Sik;Shin, Seung-Ho
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.191-194
    • /
    • 2004
  • 소프트웨어 개발에서는 서비스 기간동안, 운영환경에 쓰일 부분을 관리하고 수정해야 할 사안이 발생한다. 그러나 이러한 변경은 구조적인 다른 문제점, 즉 객체와 개발자간의 효율적인 교신(communication)능력을 중요히 요구한다. 이를 위해 개발자는 시스템의 행위에 대해서 사용자와 프로그래머 모두가 이해하기 쉽고, 이후에 이러한 구조로부터 소프트웨어 아키텍쳐를 생성할 수 있는 ${\bigcirc}{\bigcirc}$(object orient) Model을 사용한다. 그러므로 개발자는 이러한 환경에 대처하기 위해서 코드 기반을 보다 유연한 방법으로 구축할 필요성이 있다. 이를 위해 본 연구에서는 표기언어가 갖는 구문적 특성과 성질을 활용한 구문 객체 모델과 관계를 통해 개발자의 소프트웨어 구조의 생성을 지원하고 핵심요소의 표현의 일원화를 위한 방법을 제시한다.

  • PDF

A Right-to-Left Parsing using Headable Path (지배가능경로를 이용한 오른쪽 우선 구문 분석)

  • Kim, Chang-Hyun;Kim, Jae-Hoon;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.35-44
    • /
    • 1993
  • 본 논문에서는 의존문법을 이용해 한국어와 같이 비교적 어순이 자유롭고, 지배성분 후위의 특성을 갖는 언어를 효율적으로 분석할 수 있는 오른쪽 우선 분석 방법을 제안한다. 지배가능경로를 이용하면 생성되는 의존 트리의 수를 줄일 수 있음을 보이며, 의존 관계의 검사를 위해서는 지배가능경로 상의 문장 성분만을 조사하면 됨을 보인다. 한국어에 적용한 실험 결과를 보이며, 각 방식에 따른 비교 기준은 생성되는 외존 트리의 갯수와 분석 수행 시간으로 한다. 이때 한국어 문장성분간의 의존관계는 품사 분류에 의한 기본적인 의존 관계만을 이용하며, 격돌이나 의미 속성 등 추가적인 제약 사항은 이용하지 않는다. 오른쪽 우선 구문 분석은 지배가능경로를 이용함으로써 의존 관계의 빠른 검색을 할 수 있었으며, 문장 지배 성찰을 포함하지 않는 부분 의존 트리를 생성하지 않음으로써 생성되는 의존 트리의 수를 줄일 수 있었다.

  • PDF

Analyzing dependency of Korean subordinate clauses using a composit kernel (복합 커널을 사용한 한국어 종속절의 의존관계 분석)

  • Kim, Sang-Soo;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Analyzing of dependency relation among clauses is one of the most critical parts in parsing Korean sentences because it generates severe ambiguities. To get successful results of analyzing dependency relation, this task has been the target of various machine learning methods including SVM. Especially, kernel methods are usually used to analyze dependency relation and it is reported that they show high performance. This paper proposes an expression and a composit kernel for dependency analysis of Korean clauses. The proposed expression adopts a composite kernel to obtain the similarity among clauses. The composite kernel consists of a parse tree kernel and a liner kernel. A parse tree kernel is used for treating structure information and a liner kernel is applied for using lexical information. the proposed expression is defined as three types. One is a expression of layers in clause, another is relation expression between clause and the other is an expression of inner clause. The experiment is processed by two steps that first is a relation expression between clauses and the second is a expression of inner clauses. The experimental results show that the proposed expression achieves 83.31% of accuracy.

  • PDF

Using Syntactic Unit of Morpheme for Reducing Morphological and Syntactic Ambiguity (형태소 및 구문 모호성 축소를 위한 구문단위 형태소의 이용)

  • Hwang, Yi-Gyu;Lee, Hyun-Young;Lee, Yong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.784-793
    • /
    • 2000
  • The conventional morphological analysis of Korean language presents various morphological ambiguities because of its agglutinative nature. These ambiguities cause syntactic ambiguities and they make it difficult to select the correct parse tree. This problem is mainly related to the auxiliary predicate or bound noun in Korean. They have a strong relationship with the surrounding morphemes which are mostly functional morphemes that cannot stand alone. The combined morphemes have a syntactic or semantic role in the sentence. We extracted these morphemes from 0.2 million tagged words and classified these morphemes into three types. We call these morphemes a syntactic morpheme and regard them as an input unit of the syntactic analysis. This paper presents the syntactic morpheme is an efficient method for solving the following problems: 1) reduction of morphological ambiguities, 2) elimination of unnecessary partial parse trees during the parsing, and 3) reduction of syntactic ambiguity. Finally, the experimental results show that the syntactic morpheme is an essential unit for reducing morphological and syntactic ambiguity.

  • PDF

A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel (시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구)

  • Choi, Sung-Pil;Jeong, Chang-Hoo;Chun, Hong-Woo;Cho, Hyun-Yang
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.2
    • /
    • pp.251-275
    • /
    • 2011
  • In this paper, we propose a novel kernel called a semantic parse tree kernel that extends the parse tree kernel previously studied to extract protein-protein interactions(PPIs) and shown prominent results. Among the drawbacks of the existing parse tree kernel is that it could degenerate the overall performance of PPI extraction because the kernel function may produce lower kernel values of two sentences than the actual analogy between them due to the simple comparison mechanisms handling only the superficial aspects of the constituting words. The new kernel can compute the lexical semantic similarity as well as the syntactic analogy between two parse trees of target sentences. In order to calculate the lexical semantic similarity, it incorporates context-based word sense disambiguation producing synsets in WordNet as its outputs, which, in turn, can be transformed into more general ones. In experiments, we introduced two new parameters: tree kernel decay factors, and degrees of abstracting lexical concepts which can accelerate the optimization of PPI extraction performance in addition to the conventional SVM's regularization factor. Through these multi-strategic experiments, we confirmed the pivotal role of the newly applied parameters. Additionally, the experimental results showed that semantic parse tree kernel is superior to the conventional kernels especially in the PPI classification tasks.

Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables (의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링)

  • An, Jaehyun;Lee, Hokyung;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

Performance Improvement of Dependency Parser using Syntactic Constraint Rules (통사적 제약규칙에 기반을 둔 의존문법 구문 분석의 성능 향상)

  • Nam, Woong;Kim, Hyemi;Kwon, Hyuk-Chul
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.353-355
    • /
    • 2013
  • 한국어는 어근의 형태가 변하는 굴절어인 영어와 달리, 한 어절이 어근과 접사가 결합하여 각자 고유한 의미를 지닌다. 이 때문에 하나의 어절에 대한 형태소 분석 후보가 여러 개가 나올 수 있어 구문 분석을 더욱 어렵게 만든다. 본 논문에서는 한국어의 통사적 특성에 적합한 의존문법을 이용하여 구분 분석을 수행한다. 모든 형태소 분석 후보에 의존관계를 부여하고 통사적 제약규칙을 통해 의존관계를 줄여나간다. 특히, 기존의 통사적 제약규칙에 형용사의 결합정보와 논항정보를 이용한 통사적 제약규칙을 추가하여 생성 가능한 의존관계의 수를 줄인다.

Design for Humane Sentential On Software Modeling Object Presentation (인간중심적인 구문체계에 상응하는 소프트웨어 모델상의 객체표현의 설계)

  • John, Young-Jun;Shin, Seoung-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.400-402
    • /
    • 2005
  • 소프트웨어 개발의 본질은 매우 복잡하다. 이는 서로 맞물려 돌아가도록 여러 컨셉들을 명세화하고 설계하여 검증해야 하기 때문이다. 또한 문제영역에 들어맞도록 개발해내도 여전히 실세계 엔티티(entities)간의 관계를 정의해 줘야 하고, 예외적인 상황을 식별해야 하며, 각각의 상태 변화를 예측해야 하기 때문에 여전히 복잡한 행위일 수밖에 없다. 이와 같은 복잡도를 낮추기 위해 비주얼한 기호형태에 기반을 둔 개발에 도움을 받을 수 있다. 그러나 개발의 중심에 인간이 있다는 데에는 변함이 없어야 한다. 또한 기계가 아닌 좀 더 인간적이고, 자동화가 아닌 실제적인 창작의 주체로서 개발자들을 '인간'이라는 사회적 대상으로서 초점을 둘 필요가 있다. 본 논문의 목적은 개발자간의 의사소통과 자유로운 창작활동을 위한 설계법을 인문사회영역에서 접근함으로서 개발자간에 '이해'의 폭을 증대시키기 위한 객체의 관계와 설계에 대한 재 정립이다. 이를위해 소프트웨어 개발상의 요소의 선택과 관계의 표현에 대해 기존의 기호체계에만 의존하지 않고 인간의 언어구조에 기반을 둔 구문체계에 상응하는 방식을 사용하는 것으로 구문기반의 관계의 성립과 그것을 지배하는 원리를 수립한다.

  • PDF

Analysis of Compound Noun and Automatic Indexing Using Collocation Information of Nouns and Co-occurrence Information of Predicative Nouns (명사의 연어 정보와 서술성 명사의 공기 정보를 활용한 복합명사 분석 및 자동 색인)

  • Yang, Seung-Hyeon;Chung, Eui-Sok;Yoon, Jun-Tae;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.59-64
    • /
    • 1997
  • 복합명사로부터 적절한 색인어를 추출하는 것은 한국어 정보검색 시스템의 성능 향상에 중요한 역할을 한다. 본 논문에서는 복합명사로부터 색인어 추출을 하기 위해 복합명사 구문 구조 분석 결과를 활용한다. 단일명사가 3개 이상 결합된 복합명사의 경우 각 단일명사의 구문적 관계를 파악하여 적절한 괄호치기를 한 후 색인어를 추출하면 보다 좋은 결과를 얻을 수 있다. 이러한 복합명사 구문 구조 분석을 위해 말뭉치로부터 구조적 중의성이 없는 연어 관계의 완전 복합명사와, 서술성 명사와 공기하는 명사쌍을 추출한 결과를 이용한다. 또한 서술성 명사는 이와 공기하는 명사와 결합되어 복합명사를 이를 가능성이 많고, 복합명사의 형태로 인식되어야만 정확한 의미 파악이 가능하다. 서술성 명사와 공기하는 명사를 파악하여 복합명사를 추출하기 위해서 부분 파서로 공기쌍을 찾아 복합명사 후보를 생성한 후, 이 후보 가운데 적합한 복합명사만을 선택하기 위해 말뭉치에서 추출한 완전 복합명사 사전을 통해 검증한다. 이러한 방법으로 서술성 명사에서 복합명사 형태의 색인어를 추출한다.

  • PDF

Dependency parsing applying reinforced dominance-dependency constraint rule: Combination of deep learning and linguistic knowledge (강화된 지배소-의존소 제약규칙을 적용한 의존구문분석 모델 : 심층학습과 언어지식의 결합)

  • JoongMin Shin;Sanghyun Cho;Seunglyul Park;Seongki Choi;Minho Kim;Miyeon Kim;Hyuk-Chul Kwon
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.289-294
    • /
    • 2022
  • 의존구문분석은 문장을 의존관계(의존소-지배소)로 분석하는 구문분석 방법론이다. 현재 사전학습모델을 사용한 전이 학습의 딥러닝이 좋은 성능을 보이며 많이 연구되지만, 데이터셋에 의존적이며 그로 인한 자료부족 문제와 과적합의 문제가 발생한다는 단점이 있다. 본 논문에서는 언어학적 지식에 기반한 강화된 지배소-의존소 제약규칙 에지 알고리즘을 심층학습과 결합한 모델을 제안한다. TTAS 표준 가이드라인 기반 모두의 말뭉치로 평가한 결과, 최대 UAS 96.28, LAS 93.19의 성능을 보였으며, 선행연구 대비 UAS 2.21%, LAS 1.84%의 향상된 결과를 보였다. 또한 적은 데이터셋으로 학습했음에도 8배 많은 데이터셋 학습모델 대비 UAS 0.95%의 향상과 11배 빠른 학습 시간을 보였다. 이를 통해 심층학습과 언어지식의 결합이 딥러닝의 문제점을 해결할 수 있음을 확인하였다.

  • PDF