• Title/Summary/Keyword: 구면숫돌

Search Result 3, Processing Time 0.015 seconds

Develvopment of Infeed Grinding Machine and Its Effects on Spherical Surface Grinding (구면 전용 Infeed 연삭기의 개발과 성능평가)

  • 이상직;정해도;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1028-1032
    • /
    • 1995
  • This paper describes the manufacture of spherical and aspherical surface on glass, superalloy and ceramic components. The rotationally symmetricallenses, and the ceramic or superalloy molds with spherical shapes are mainly generated by cutting processes on CNC lathe machine or 4,5 axis CNC machining centers. Recently, spherical shape parts require more precise and efficent machining technologies for wide material range such as optical lens of the lithography device in semiconductor manufacturing processes or the high precision mold machining of anti-chemical, anti-wear materials. In this paper, we introduce a newly developed infeed grinding machine with metal with metal bonded cup type wheel and its effects on spherical surface grinding.

  • PDF

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens (소형 비구면 렌즈 금형의 경면 연삭 가공에 관한 연구)

  • Lee, Joo-Sang;Saeki, Masaru;Kuriyagawa, Tsunemoto;Syoji, Katsuo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.82-87
    • /
    • 2001
  • This paper deals with mirror grinding of a small-sized aspherical lens by the resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, the aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machinery technology. Also, to realize compactability, efforts are being made to produce a micro aspherical lens, for which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing an micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-type truer and tool path was calculated by the radius of curvature of wheel after truing and dressing. And then in the aspherical grinding experiment, WC material which is used as a molding die for the small-sized aspherical lens was ground. It results was that a form accuracy of 0.1918${\mu}m$ P-V and a surface roughness of 0.064${\mu}m$ Rmax.

  • PDF