• Title/Summary/Keyword: 구동력 제어시스템

Search Result 119, Processing Time 0.031 seconds

Development of a Haptic System for Grasp Force Control of Underactuated Prosthetics Hands (과소 구동 전동의수의 파지력 제어를 위한 햅틱 시스템 개발)

  • Lim, Hyun Sang;Kwon, Hyo Chan;Kim, Kwon Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Underactuated prosthetic hands are relatively light and economical. In this work, an economical grasping force control system is proposed for underactuated prosthetic hands with adaptive grasp capability. The prosthetic hand is driven by a main cable based on a set of electromyography sensors on the forearm of a user. Part of the main cable tension related to grasping force is fed back to the user by a skin-mounted vibrator. The proper relationship between the grasping force and the vibrator drive voltage was established and prototype tests were performed on a group of users. Relatively accurate grasping force control was achieved with minimal training of users.

A study of Control of the Transverse Flux Linear Motor for OHS System (OHS 시스템에 적용한 횡자속형 선형전동기 제어에 관한 연구)

  • Kim, Won-Gon;Whang, Gye-Ho;Yun, Jong-Bo;Lee, Geun-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.960-961
    • /
    • 2008
  • 본 논문에서는 직선 및 곡선구간에서 구동력을 필요로 하는 LCD 패널 생산라인의 이송장비인 OHS 시스템에 적용이 가능한 횡자속 선형전동기의 제어에 관하여 기술한다. OHS 시스템은 클린룸 내에서 이송대차가 천장에 레일과 함께 설치되어 장거리의 직선 및 곡선 이송경로를 가지는 LCD 패널 물류 이송장치이다. 기존 선형전동기들은 그 구조상 곡선구간 구동원으로 적용하기 어렵고, 장거리 이송용으로 사용하기에 상당한 가격적인 부담이 발생된다. 따라서 본 논문에서는 상대적으로 다른 선형전동기와 비교하여 가격적인 부담이 적고, 곡선구간에서 구동력을 발휘할 수 있는 횡자속 선형전동기를 OHS 시스템에 적용하고, 선형전동기의 곡선구간에서의 출력특성을 분석하며, 이동자의 위치검출 방법 및 제어 알고리즘을 제안한다. 제안한 방법은 실제 제작된 OHS 실험장치를 통하여 제어특성을 검증한다.

  • PDF

Development of the Driving-will Control System for a Power-assisted Electric Wheelchair (힘 보조형 전동 휠체어를 위한 구동 의지 제어 시스템 개발)

  • Kong, Jung-Shik;Lee, Bo-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1296-1301
    • /
    • 2012
  • This paper deals with development of the driving-will control system in power-assisted electric wheelchair. Nowadays, population of elderly people has been increased rapidly, and also an electric wheelchair has been considered as the device for the elderly. Especially, power-assisted electric wheelchair can overcome problems that a conventional electric wheelchair holds, such as lack of movement of wheelchair user. In this paper, we propose the sensors system to measure the driving-will force and perform the control action for a power-assisted electric wheelchair. And motion performance of the proposed system is verified through the experiment.

Design of Control System for Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 제어시스템 설계)

  • Choi, Gi-Won;Lee, Myung-Un;Ra, Sun-Gil;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.248-257
    • /
    • 2007
  • This paper presents the control system for driving myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. A surface myoelectric sensor for measuring myoelectric signal is designed a skin interface and a processing circuit according to myoelectric signal output property. The control system consists of two controller for driving dual motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the proposed control system.

산업용 전동기 구동시스템의 동향

  • 설승기
    • 전기의세계
    • /
    • v.44 no.3
    • /
    • pp.23-26
    • /
    • 1995
  • 최근 영구자석의 발전으로 인하여 영구자석을 이용하는 특수한 형태의 전동기가 개발되어 정밀기계의 구동원으로 이용되고 있으나 산업용 구동력으로는 아직 폭넓게 이용되지 못하고 있다. 그러나 20세기 중반부터 혁명적이라 할 만큼 빠른 발전을 보이고 있는 전자 공학은 전동기 구동의 분야에도 큰 영향을 주고 있으며, 특히 전력전자공학으로 불리는 전력제어기술과 전자회로기술의 결합은 산업용 전동기 구동 시스템에 새로운 지평을 열고 있으며 그 성능이 나날이 발전하고 있다. 이 글에서는 전력전자공학을 이용한 산업용 전동기 구동시스템의 최근의 발전추세와 문제점을 전망하고자 한다.

  • PDF

Actuator design and experimental verification on a high speed underwater vehicle (고속 수중운동체의 구동장치 설계 및 실험적 검증)

  • 곽동훈;양승윤;이동권;김창걸;서진희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.510-515
    • /
    • 1993
  • 본 연구에서는 저속에서도 시스템의 자세 제어가 용이하게 하기 위하여 추진기 뒤에 제어판이 위치하도록 설계하였으며, 일반 서보 시스템과는 달리 무게와 공간 제약이 크고, 제어판 운동에 따른 외란 등록성의 변화가 심하므로 push-pull 형태의 소형, 고출력 편로드 복동 복수 실린더의 작동기를 설계하였다. 또한 일반적으로 서보밸브와 작동기는 일체형으로 설계되나 본 시스템의 공간상 심한 제약으로 인하여 서보밸브와 작동기를 분리하는 방법으로 구조설계를 하고 그 사이 유로는 매니폴드식으로 하여 동력전달을 하였다. 설계된 구동장치를 실제 정밀제작하여 실험을 수행하였으며, 시뮬레이션 결과와 실험에 의하여 얻어진 결과를 비교 분석하여 설계의 타당성 및 시스템의 성능을 검증하였다. 고속 수중운동체에 대하여 저속에서 자세제어를 용이하게 하고, 제한된 좁은 설치공간의 문제점을 해결하기 위하여 1) 추진기 후미에 독립된 4개의 상, 하, 좌, 우 제어판 설치 2) 서보밸브는 몸체에, 작동기는 Tail Tube에 분리 작동 설계 3) 소형의 편로드 복동 복수 실린더로 설계 구성된 유압식 구동장치는 시뮬레이션과 실험 결과를 통하여 시스템의 타당성을 입증하였다. 그러므로, 개발한 구동장치는 저속에서도 큰 제어력으로 자세 제어가 용이하기 때문에 얕은 수심에서 발사시 예상되는 위험 요소를 상다ㅇ 개선 시키므로써 운용범위의 다양화를 가져 올것으로 기대된다.

  • PDF

Vehicle Traction Control System using Fuzzy Logic Theory (퍼지논리를 이용한 차량 구동력 제어 시스템)

  • 서영덕;여문수;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

Development of a Control Method of Traction Control System Using Vehicle Model (차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발)

  • Song Jeonghoon;Kim Heungseob;Lee Dae Hee;Son Minhyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

Modeling of a Robot Control System using the Real-time Object Model : TMO (실시간 객체 TMO를 이용한 로봇 제어 모델링)

  • 곽상훈;김현주;서한석;김정국
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.157-159
    • /
    • 2004
  • 본 논문에서는 분산 일시간 객체 엔진을 내장하는 TMO-LINUX/ARM 커널 상에서, 각종 센서 및 모터 제어로 구성되는 로봇 제어 시스템을 동적 분산 실시간 객체인 TMO로 모델링하고 구현하였다. TMO(Time-triggered Message-triggered Object)는 시간적 조건에 의해 구동되는 객체 내의 실시간 스레드와 메시지에 의해 구동되어 주어진 데드라인 안에 작업을 수행하는 메시지 구동 실시간 스레드들의 동적 멤버들로 구성되는 실시간 객체로, 외부의 입출력에 반응하며 내부 장치에 대한 실시간 작업을 병행해야 하는 로봇 제어 시스템에 대해 매우 적합한 모델이다. 본 논문에서는 이러한 로봇 제어 시스템 설계에의 TMO의 적용이 잘 정의되고 규격적인 설계 모델을 제공함을 보인다.

  • PDF

Inverse Dynamic Analysis for Various Drivings in Kinematic Systems (기구학적 시스템에 있어서 구동방법에 따른 역동역학 해석)

  • Lee, Byung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.869-876
    • /
    • 2017
  • Analysis of actuating forces and joint reaction forces are essential to determine the capacity of actuators, to control the mechanical system and to design its components. This paper presents an algorithm that calculates actuating forces(or torques), depending on the various types of driving constraints, in order to produce a given system motion in the joint coordinate space. The joint coordinates are used as the generalized coordinates of a kinematic system. System equations of motion and constraint acceleration equations are transformed from the Cartesian coordinate space to the joint coordinate space using the velocity transformation method. A numerical example is carried out to verify the algorithm proposed.