• Title/Summary/Keyword: 구강생물

Search Result 613, Processing Time 0.023 seconds

A Novel Histone Methyltransferase, Kodo7 Induces Histone H3-K9 Methylation and Mediates Apoptotic Cell Death

  • Kim, Sung-Mi;Seo, Sang-Beom
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.81-86
    • /
    • 2006
  • SET (Suppressor of variegation, Enhancer of zeste, and the Trithorax) domain-containing proteins are known to have methyltransferase activity at lysine residues of histone proteins. In this study, we identified a novel SET domain-containing protein from mouse and named Kodo7. Indeed, Kodo7 has methyltransferase activity at K9 residue of the H3 protein as demonstrated by a histone methyl-transferse activity assay using GST-tagged Kodo7. Confocal microscopy showed that Kodo7 is co-localized with histones in the nucleus. Interestingly, ectopic expression of Kodo7 by transient transfection induced cell death and treatment of the transfectants with a caspase-3 inhibitor, Ac-DEVD-AFC decreased Kodo7-induced apoptosis. These results suggest that Kodo7 induces apoptotic cell death through increased methylation of histones leading to transcriptional repression.

ALDH and CYP2E1 Single Nucleotide Polymorphism Distribution in Korean

  • Han, Dong-Hoon;Kim, Jeong-Hee
    • International Journal of Oral Biology
    • /
    • v.31 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Aldehyde dehydrogenase (ALDH) plays an important role in alcohol metabolism; ALDH is responsible for the oxidation of acetaldehyde generated during alcohol oxidation. ALDH is also known to oxidize various other endogenous and exogenous aldehydes. Cytochrome P-450 2E1 (CYP2E1), a liver microsomal enzyme, also metabolizes acetaldehyde and ethanol and can be induced by other inducers including acetone and ethanol. We examined single nucleotide polymorphisms (SNP) of ALDH and CYP2E1 genotypes in Korean. Restriction fragment length polymorphism (RFLP) method was used to determine ALDH and CYP2E1 SNP. Mutation in ALDH was 60% (heterozygote 46.7% and homozygote 13.3%) among 15 cases. CYP2E1 mutation was 52.7% (heterozygote 47.4% and homozygote 5.3%) among 19 cases.

Development of Quantitative Real-Time PCR Primers for the Detection of Aggregatibacter actinomycetemcomitans

  • Park, Soon-Nang;Park, Jae-Yoon;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • The purpose of this study was to develop species-specific real-time quantitative PCR (RT-qPCR) primers for use in the detection of Aggregatibacter actinomycetemcomitans. These primers were designed based on the nucleotide sequences of the RNA polymerase ${\beta}$-subunit gene (rpoB). We assessed the specificity of the primers against nine strains of A. actinomycetemcomitans, eight strains (three species) of the Haemophilus genus, and 40 strains of 40 other oral bacterial species. Primer sensitivity was determined by testing serial dilutions of the purified genomic DNAs of A. actinomycetemcomitans ATCC $33384^T$. Our data reveal that we had obtained species-specific amplicons for all of the tested A. actinomycetemcomitans strains, and that none of these amplicons occurred in any of the other species. Our PCR protocol proved able to detect as little as 2 fg of A. actinomycetemcomitans chromosomal DNA. Our findings suggest that these qRT-PCR primers are suitable for application in epidemiological studies.

Anti-proliferative and Apoptosis Inducing Effect of Momordin I on Oral Carcinoma (KB) Cells

  • Seo, Kyeong-Seong;Kim, Jeong-Hee;Kim, Yeo-Gab
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.113-118
    • /
    • 2007
  • Treatment of oral cancers with chemotherapeutic agents become evaluated as an effective method to reduce cancer cell proliferation. Anti-proliferative and anti-oral cancer activities of momordin I on oral cancer cells were evaluated in this study. Momordin I was originally purified from a natural product, Ampelopsis radix and showed the antiproliferative activity against oral carcinoma, KB cells. Obtained $IC_{50}$ value was approximately $10.4{\mu}g/ml$. Time-and dose-dependent chromosomal DNA fragmentations were observed in momordin I-treated KB cells. Flow cytometry analysis showed time-dependent apoptotic cell appearance after treatment of momordin I. Approximately 18.6% apoptotic cells were observed at 72 hours after $20{\mu}g/ml$ of momordin I treatment. These observation were consistent with the results obtained in DNA fragmentation analysis. These data suggest that momordin I has anti-proliferative effect and induces cell death in KB cells through apoptosis.

Luteolin Induces the Differentiation of Osteoblasts

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.99-106
    • /
    • 2010
  • Luteolin is a flavonoid that exists in a glycosylated form in celery and green pepper. Flavonoids possess antioxidant and anti-inflammatory properties and can reduce the expression of key inflammatory molecules in macrophages and monocytes. It has been reported also that some flavonoids have effects on bone metabolism. The effects of luteolin on the function of osteoblasts were investigated by measuring cell viability, alkaline phosphatase activity, type I collagen production, osteoprotegerin secretion, Wnt promoter activity, BMP-2 and Runx2 expression and calcified nodule formation. Luteolin has no effects upon osteoblast viability but induced an increase in alkaline phosphatase activity, type I collagen production and a decrease in osteoprotegerin secretion in these cells. Luteolin treatment also upregulated BMP-2 mRNA expression. These results suggest that luteolin may be a regulatory molecule that facilitates the differentiation of osteoblasts.

BIOLOGIGIC MEMBRANE FOR GUIDED BONE REGENERATION (골 재생을 위한 생물학적 유도막)

  • Hong, Jong-Rak;Kang, Na-Ra;Choung, Pill-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • The purpose of this study was to evaluate the stability and efficacy of biologic membrane made of freeze-dried cartilage as a barrier to facilitate guided bone regeneration in experimental non-healing bone defects in the rat mandible. Nine adult Sprague-Dawley rats (400-500g) were used in experiment. 5.0mm in diameter were created on the mandibular angle area by means of slow-speed trephine drill. In microscopic examination, dynamic immature bone forming at 2 weeks and its calcification at 4 weeks were observed. The membrane made of lyophilized cartilage taken from human costal cartilage seems to be very effective for guided bone regeneration as a biologic membrane and the scaffold for attachment of cells or local drug delivery system of growth factor, which may meet the ideal requirement of a barrier membrane and graft materials.

The Relationship between Mitochondria and NLRP3 Inflammasome

  • Lee, Hyun Ah;Na, Hee Sam;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.42 no.3
    • /
    • pp.85-90
    • /
    • 2017
  • Mitochondria participate in various intracellular metabolic pathways such as generating intracellular ATP, synthesizing several essential molecules, regulating calcium homeostasis, and producing the cell's reactive oxygen species (ROS). Emerging studies have demonstrated newly discovered roles of mitochondria, which participate in the regulation of innate immune responses by modulating NLRP3 inflammasomes. Here, we review the recently proposed pathways to be involved in mitochondria-mediated regulation of inflammasome activation and inflammation: 1) mitochondrial ROS, 2) calcium mobilization, 3) nicotinamide adenine dinucleotide ($NAD^+$) reduction, 4) cardiolipin, 5) mitofusin, 6) mitochondrial DNA, 7) mitochondrial antiviral signaling protein. Furthermore, we highlight the significance of mitophagy as a negative regulator of mitochondrial damage and NLRP3 inflammasome activation, as potentially helpful therapeutic approaches which could potentially address uncontrolled inflammation.

An overview of the endocrine functions of osteocalcin

  • Baek, Kyunghwa
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Osteocalcin is the most abundant non-collagenous protein produced in bone. It has traditionally been regarded as a marker of bone turnover and is thought to act in the bone matrix to regulate mineralization. However, emerging knowledge regarding osteocalcin has expanded to include functions in energy metabolism, fertilization, and regulation of cognition. Fully carboxylated osteocalcin binds to hydroxyapatite, thereby modulating bone turnover, whereas undercarboxylated osteocalcin in the circulation binds to osteocalcin-sensing receptors and acts as a hormone that affects multiple physiological aspects. In this review, we summarize the current knowledge regarding the hormonal actions of osteocalcin in various organs and potential cellular downstream signaling pathway that may be involved.

Effects of plant-derived natural products on inflammatory bone destructive disease

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.130-143
    • /
    • 2019
  • Rheumatoid arthritis, osteoarthritis, and periodontal disease are bone destructive diseases mainly caused by inflammation. Various studies are being conducted to develop treatments for inflammatory bone destructive diseases. Many of these studies involve plant-derived natural compounds. In these studies, cell differentiation, signal transduction pathways, and bone resorption were measured at the cellular level. In disease-induced animal models, the amount of inflammatory mediators or matrix destructive enzymes and serum metabolic markers were measured. This study examined the effects of plant-derived natural compounds, such as flavonoids, on inflammatory bone destructive diseases. In addition, we structurally classified various substances used to maintain bone health and summarized the biological effects and related mechanisms of the components.

Discovery and characterization of berberine derivatives as stimulators of osteoblast differentiation

  • Han, Younho;Park, Won-Jong
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.165-172
    • /
    • 2019
  • Berberine has been used clinically for more than a decade to treat various diseases, has been shown to be effective in osteoblast differentiation, and is a potential treatment option for osteoporosis. However, compared with existing osteoporosis drugs, berberine is somewhat less effective. This study aimed to identify a new compound with efficacy superior to that of berberine. The osteogenic activities of various berberine derivatives were evaluated via cell differentiation in C2C12 preosteoblast cell lines. Alkaline phosphatase (ALP) staining assay and structure-activity relationship demonstrated that compound 2b had a potent osteogenic effect. Furthermore, compound 2b dose dependently increased ALP activity and showed no toxicity at the effective concentration, indicating its efficacy. Additionally, compound 2b upregulated BMP2-induced transcriptional activity in a promoter activity assay using ALP, BSP, and OC promoters.