
Introduction

Classically, bone has been considered as an inert organ, only 

providing the supporting framework for the body, protection for 

soft tissues and functions as a regulator for mineral homeosta-

sis, a storage system for minerals, namely, calcium and phos-

phorus. Over the last decade, mounting evidence has emerged 

that bone can act as an endocrine organ [1]. The bone matrix 

protein osteocalcin has been extensively investigated since 

studies first elaborated its endocrine function in regulation of 

energy metabolism [2-4]. Osteocalcin has traditionally been 

regarded as a bone turnover marker and thought to act in the 

bone matrix to regulate mineralization. However, emerging 

knowledge on the functionality of this protein expanded to in-

clude properties such as energy metabolism, fertilization, and 

regulation of cognitive functions. In this review, we summarize 

the current knowledge of hormonal actions of osteocalcin in 

various organs and potential cellular downstream signaling 

pathway involved.

Undercarboxylated Osteocalcin

Osteocalcin, also referred to as bone γ-carboxyglutamic acid 

(Gla) containing protein, is the most abundant non-collagenous 

protein produced in bone [5]. It is a small protein with a size of 

5.6 kDa (49 amino acids long in humans) and is produced pri-

marily by osteoblasts, although smaller amounts are made by 

odontoblasts or hypertrophic chondrocytes [6]. In osteoblasts, 

osteocalcin undergoes vitamin K-dependent post-translational 

modifications, which cause carboxylation at glutamic acid (Glu) 

residues in positions 17, 21, and 24. Vitamin K is first con-

verted to an epoxide, and then reduced by vitamin K epoxide 

reductase to complete the carboxylation process [7]. 

These three Gla residues allow binding of osteocalcin to hy-

droxyapatite crystal in the bone matrix, leading to a disulfide 

bond between cysteine residues which stabilize the three-

dimensional structure of osteocalcin [8]. 

Osteocalcin still containing one or more empty, that is, not 

carboxylated Glu residue, are denoted as undercarboxylated 
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osteocalcin (ucOC) [9]. Of the total osteocalcin released into 

the bloodstream, 40–60% exists as either a partially or com-

pletely uncarboxylated form; these undercarboxylated forms 

have been known to perform hormone-like functions, includ-

ing energy metabolism, fertilization, and regulation of cognitive 

functions [9-17]. 

Endocrine Functions of Osteocalcin

Previous reports have shown that ucOC upregulates β-cell 

proliferation and insulin production in the pancreas, while also 

increasing insulin sensitivity in adipose tissue and skeletal 

muscle [18-20]. The ESP (Ptprv) gene, first explored by Lee 

et al. [3], is expressed only in bone and encodes for a tyrosine 

phosphatase that suppresses carboxylation of osteocalcin, 

consequently affecting insulin production in the pancreas. 

Global and osteoblast-specific deletions of ESP produced hy-

poglycemic and anti-obese phenotypes. 

Since ucOC regulates glucose metabolism, which provides 

energy to muscles, it may function as part of the endocrine 

axis between bone and muscle that favors adaptation to ex-

ercise. Mera et al. [21] demonstrated the role of osteocalcin 

signaling in myofibers in promoting uptake and utilization of 

glucose and fatty acids, which contributes to muscle adapta-

tion during exercise. Acutely or chronically administered osteo-

calcin enhanced the exercise capacity of young mice and re-

stored the exercise capacity of old mice to that of young mice 

(15-month-old mice vs. 3-month-old mice). 

Concerning endocrine function in reproduction, Oury et al. 

[22] reported the regulatory role of osteocalcin in male fertility. 

Using leydig cell specifically cAMP response element binding 

protein (CREB) deficient mice, they showed that osteocalcin 

upregulates testosterone synthesis in a CREB-dependent 

manner, promoting enzymes expressions required for testos-

terone synthesis and germ cell survival. 

Osteocalcin signaling in the regulation of cognition and anxi-

ety in the brain were also demonstrated. 

Oury et al. [23] observed a substantial increase in anxiety-

like behavior, along with major deficits in spatial learning 

and memory, in Osteocalcin
–/–

 adult mice and showed that 

brain development and the acquisition of cognitive function 

of offspring is influenced by maternal osteocalcin. The same 

research group demonstrated that the hippocampal region is 

smaller [23] and the corpus callosum region [24] is often miss-

ing in the Osteocalcin
–/–

 mice compared to those of wild-type 

(WT) littermates. Serotonin, dopamine, and norepinephrine 

neurotransmitters were 20–50% reduced, and the accumula-

tion of γ-aminobutyric acid increased by 15–30%, in both the 

midbrain and brainstem of Osteocalcin
–/–

 mice [25]. 

Osteocalcin Sensing Receptor

G-protein-coupled receptor family C group 6 member A 

(GPRC6A) was recently identified as an undercarboxylated 

osteocalcin-sensing receptor [26]. Osteocalcin signaling has 

been demonstrated to be mediated by GPRC6A in various tis-

sues, including pancreas, testes, adipose, and skeletal muscle 

[27-29]. Pi et al. [30] carried out computational modeling to 

probe the structural basis of osteocalcin binding to GPRC6A 

and predicted that the C-terminal hexapeptide docks to the 

extracellular side of the transmembrane domain of GPRC6A. 

Wei et al. [20] demonstrated GPRC6A-mediated osteocalcin 

signaling occurred in β-cell proliferation during development 

and adulthood in mice [20]. Our research team has recently re-

ported that ucOC downregulates pancreatic lipase via GPRC6A 

in pancreatic acinar cells [31]. GPRC6A-mediated osteocal-

cin signaling has also been proposed in fat, skeletal muscle 

and hepatic tissues. GPRC6A
–/–

 mice developed an increase 

in triglycerides and a decrease in both glycogen storage and 

cholesterol levels, along with hepatic steatosis. Glucose in-

tolerance, insulin resistance and white fat accumulation were 

observed in GPRC6A
–/–

 mice but not in WT mice [29, 32-36]. 

Pi et al. [37] showed that ucOC affects testosterone secretion 

and De Toni et al. [38] reported vitamin D production in tes-

ticular Leydig cells through a GPRC6A-dependent pathway. 

Beyond GPRC6A-mediated osteocalcin signaling, Khrimian et 

al. [39] recently identified an orphan class C G protein-coupled 

receptor (GPCR), Gpr158, as an another osteocalcin-sensing 

receptor, which is expressed in neurons of the hippocampal 

CA3 region and mediates ucOC’s regulation of cognitive func-

tion and memory. 

Even though class C GPCRs, also called “nutrient receptors”, 

are activated by numerous ligands, some studies do not show 

consistency in osteocalcin activation of class C GPCRs, includ-

ing GPRC6A. Jacobsen et al. [40] reported that osteocalcin did 

not activate GPRC6A when expressed in Chinese Hamster 

Ovary cells. They reported that the GPRC6A receptor is inter-

nalized and constitutively recycled; consequently, these events 

do not seem to directly regulate the agonist-mediated recep-

tor response. They further demonstrated that the expression 

level of GPRC6A was unaffected by a reduction in basal recep-

tor signaling. Oury et al. [26] demonstrated that the effects of 
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osteocalcin in Leydig cells were not specifically mediated by 

GPRC6A. Importantly, even previous animal models are not 

consistent with regards to the influence of GPRC6A on glu-

cose homeostasis in GPRC6A-deficient mice [29,41]. Further 

studies are required to identify additional osteocalcin-sensing 

receptors recognized by various cell types.

Osteocalcin Signaling and Transcriptional 
Regulation 

Mounting studies have demonstrated the osteocalcin sig-

naling pathway and its transcriptional effector in various cell 

types. The Karsenty group has demonstrated that osteocalcin 

induces a cAMP accumulation, indicating Gs coupling, but no 

Gq or extracellular signal–regulated kinase (ERK) pathway ac-

tivation, in TM3 Leydig cells. They also reported that the CREB 

pathway is one mediator of osteocalcin signaling in myofibers 

by showing that CREB phosphorylation in myotubes is weaker 

after exercise using muscle-specific GPRC6A knockout mice 

[21]. The Quarles group also demonstrated that GPRC6A 

agonists can induce Gs coupling by showing that cAMP ac-

cumulation occurred in GPRC6A-transfected HEK 293 cells in 

response to four GPRC6A agonists (osteocalcin, testosterone, 

L-arginine, and divalent cations) [27,42]. Pi et al. [43] reported 

that osteocalcin leads to the downstream activation of serum-

response element (SRE) and/or ERK (Gq pathway) in GPRC6A-

transfected HEK 293 cells.

Park et al. [31] recently reported that ucOC downregulates 

pancreatic lipase expression in a cAMP/protein kinase A/ATF4-

dependent pathway, indicating Gs coupling in pancreatic acinar 

cells. The NFκB-p65-dependent osteocalcin signaling path-

way in vascular tissue was implicated in a study by Zhou et al. 

[44], demonstrating that osteocalcin reverses obesity-induced 

autophagic dysfunction and endoplasmic reticulum stress.

In contrast to the aforementioned studies, Jacobsen et al. [40] 

used a GPRC6A-transfected Chinese Hamster Ovary cell line 

to demonstrate that osteocalcin does not induce ERK signal-

ing pathway or any of the other G-protein signaling pathways 

that were tested. Thus, further studies are justified to explore 

which ligand classes and signaling pathways are recruited by 

the GPRC6A receptor.

Conclusions

The studies presented above provide evidence that osteo-

calcin functions as an endocrine hormone, leading to a para-

digm shift in our understanding of traditional bone physiology. 

Osteocalcin in circulation can now be considered to be a hor-

mone-like factor that regulates energy metabolism, reproduc-

tion, and even brain function, such as cognition/mood, through 

endocrine links between bone and pancreas, muscle, adipose, 

testes, and brain. Considering the mounting evidence showing 

the strong regulatory effects of osteocalcin on various organs, 

it is highly likely that osteocalcin signaling also influences ad-

ditional organs that have not been studied. Determining the 

extent to which osteocalcin’s endocrine roles observed in ani-

mal models also manifest in humans will be a critical issue in 

osteocalcin research.
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