• Title/Summary/Keyword: 교통하중

Search Result 236, Processing Time 0.025 seconds

A Study on the Evaluation of Shear Strength of Geotextile & Geomembrane by Traffic Load in Landfill Final Cover System (폐기물 매립지 최종복토층에서 교통하중에 의한 부직포 및 Geomembrane의 전단강도의 변화에 대한 사례연구)

  • Park, Sang-Hyun;Lee, Jai-Young;Choi, Mun-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.1 no.1
    • /
    • pp.3-11
    • /
    • 2002
  • The Geotextiles have been used for the protection of Geomembrane and the prevention of clogging phenomenon; however, the material can be easily damaged by construction equipments. It generally recommended to use at least $500g/m^2$ of Geotextile in Korea landfill, but few researcher were performed about the damage of Geotextile. Therefore, we intended to evaluate the potential damage of Geotextile by the traffic load simulating the final cover system in a field scale. Tensile strength and strain were appraised to understand the degree of damaged Geotextile. The tests were conducted under the condition of cross direction of Geotextile. Four different weight of Geotextile was used for the evaluation $500g/m^2$, $700g/m^2$, $1,000g/m^2$ and $1,500g/m^2$. The initial strain of $500g/m^2$ of Geotextile showed 50% that did not meet the standard 60%. The strain of $700g/m^2$ of Geotextile was below the standard after the traffic load test; however, the others met the requirement in the test. In conclusion, the weight of Geotextile used in landfill to protect the Geomembrane should be at least $700g/m^2$ in a view of strain requirement. We expect this study provides fundamental information for the construction of Geotextile in landfill.

  • PDF

Numerical Analysis on the Influence Factors of Cavity Occurrence in the Stability of the Underground with Cavity (도로 하부지반에서 발생된 공동이 지반 안정성에 미치는 영향에 관한 수치해석)

  • Nam, Jun-Hee;Kim, Jong-Chul;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 2022
  • In this study, finite element numerical analysis was performed considering various influence factors(cavity shape and size, pavement thickness and size of traffic load) in order to analyze the impact factors in the underground of the road where the cavity occurred and to evaluate the stability of the ground. In order to verify the reliability of the numerical analysis method applied in this study and the results it was compared and analyzed with the results of previous studies and field measurements. The correlation between the influence factors was analyzed through the distribution of vertical displacement obtained from the numerical analysis results, the distribution of surface settlement and surface settlement, the distribution of the stress ratio, and the distribution of the safety factor. As a result, it was confirmed that as the size of the cavity and traffic load increased and the thickness of the pavement decreased, the vertical displacement and surface settlement at the top of the cavity increased. Also, the shape of the cavity was square, the stability of the ground was significantly reduced compared to the case of a circular cavity. Through these results, it was possible to confirm the overall stability of the lower ground of the road where the cavity was generated.

Calibration Method of Vehicle Weight Data from Weigh-In-Motion System According to Temperature Effects (온도의 영향에 대한 Weigh-In-Motion 시스템의 차량중량자료 보정기법)

  • Hwan, Eui-Seung;Lee, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.187-196
    • /
    • 2010
  • The purpose of this study is to develop the calibration method for temperature effects to improve the accuracy of the Weigh-In-Motion(WIM) system for collecting long-term truck weight data. WIM system was installed at a location where the truck traffic volume is high and weight data has been collected from January 2010. In this study, as a calibration measure, the first axle weight of Truck Type 10, the semi tractor-trailer is used based on the fact that the first axle weight is relatively constant, independent of the cargo weight. From this fact, calibration equations are developed from the relationship between the axle weight and the temperature(daily mean, maximum and minimum). Analysis on calibrated weight data shows adequacy of the proposed calibration method. Results of this study can be used to improve the accuracy of the WIM system and to carry out more rational design of pavement and bridge structures.

Dynamic Performance Evaluation of New Type PSC Railroad Bridges (신형식 PSC 철도교량의 동적성능 평가)

  • Choi, Sanghyun
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.4
    • /
    • pp.259-265
    • /
    • 2011
  • After the commercial opening of the KTX in 2005, the high speed railroad has been rapidly emerged as the major transportation means due to its high energy efficiency. Recently, the government has announced its plan to build the future transportation system around the high speed railroad. Based on this policy, the existing lines as well as the lines under construction or design are planning to increase design speed. In this paper, the suitability of the mid-span PSC girder bridges for the high speed railroad is evaluated via dynamic analysis. IT, Precom, and WPC girder bridges are considered for the purpose of this study and, for comparison, the identical modeling method and the analysis technique are utilized. The performance indices used for dynamic performance evaluation are the natural frequency, the vertical displacement, the end axial displacement, track irregularity, etc. The KTX train is utilized as a dynamic load, and the dynamic analysis is performed up to the train speed of 420km/hr with the increment of 10km/hr.

Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway (고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발)

  • Choi, Chan-Yong;Choi, Won-Il;Han, Sang-Jae;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.55-69
    • /
    • 2013
  • An alternative design method of existing methods based on elastic theory the design method of roadbed considering plastic deformation of roadbed and stress-strain at roadbed materials with the cyclic loading of trains passing. The characteristics of the developed design method considering traffic load, number of cyclic loading and resilience modulus of roadbed materials can evaluate elastic strain as well as plastic settlement with allowable design criteria. The proposed design method is applied to standard roadbed section drawing of HONAM high-speed railway considering design conditions such as allowable elastic and plastic settlement, train speed, the tonnage of trains. As a result, required levels of resilience modulus model parameter ($A_E$), unconfined compressive strength, types of soil material were evaluated.

Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various eVTOL Types (다양한 eVTOL 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석)

  • Kim, Dong-Hee;Jang, Han-Yong;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.203-210
    • /
    • 2021
  • In many metropolitan cities around the world, ground and underground transportation networks are saturated due to urbanization. In addition, regulations on carbon emissions to prevent global warming are becoming stricter, and eVTOL, which will be operating in complex cities, is gaining popularity as the next generation of eco-friendly transportation. In this study, the hover lift efficiency and disc loading of eVTOLs for each type were calculated by classifying eVTOLs into following types: multicopter, lift+cruise, and vectored thrust. In addition, using the aerodynamic analysis programs OpenVSP, Fluent and Javaprop, the specific battery energy required for the smooth operation of eVTOL, which will be realized in the near future, was calculated and analyzed base on reports published by Uber and airworthiness authorities of each country.

Displacement Evaluation of Cable Supported Bridges Using Inclinometers (경사계를 이용한 케이블교량의 변위 산정)

  • Kong, Min Joon;Yun, Jung Hyun;Kang, Seong In;Gil, Heungbae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.297-308
    • /
    • 2023
  • Displacement of structures is the most important parameter for safety and performance assessment and is measured to use for diagnosis and maintenance of bridges. Usually LVDT, Laser and GNSS are used for displacement measurement but these measurement instruments have problems in terms of field condition and cost. Therefore, in this study, displacements were evaluated using rotational angle measured by inclinometers and the proposed algorithm was experimentally verified. As the result, vertical displacements of cable supported bridges with traffic and temperature load were properly evaluated through the proposed algorithm. Therefore it is considered that the proposed algorithm can be used for displacement measurement by vehicle load test and long term displacement monitoring.

A Study on Behavioral Characteristics of Asphalt Pavements using Wandering Measurement Devices (원더링 장비 적용을 통한 아스팔트 포장 거동 특성 연구)

  • Kim, Nakseok;Jeong, Jin-Hoon;Lee, Jae-Hoon;Park, Changwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.89-94
    • /
    • 2006
  • Premature failures in pavements are frequently reported due to rapid increasement in traffic volume, heavy vehicles, and high temperature in the summer. Based on this concept in mind, Korea Highway Corporation established the Test Road Operation Center to estimate the pavement performance. To evaluate the pavement performance effectively using the field data, wandering is an important topic in pavement analysis. In this study, portable wandering system was developed and analyzed to investigate the pavement responses due to the dynamic truck passes, and analyzed the wandering to dynamic load test. The test results revealed that the advantages of laser devices were noticeable compare to the other measuring ones. To understand the behavioral characteristics of pavements using the wandering measurement devices, dynamic truck tests were conducted in the field. Test results showed that the effects of wandering on asphalt pavement were significant. The data analysis using this wandering effect is considered as an important tool in performance analysis of asphalt concrete pavement.

A study on Development of Methods to Rehabilitate the Damaged Prestressed Concrete beam Using Glass Fiber (유리섬유를 이용한 손상된 프리스트레스트 콘크리트 보의 보강공법 개발연구)

  • Kang, Won-Ho;Han, Man-Yop;Lee, Taek-Sung;Rhu, Young-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.167-175
    • /
    • 1999
  • Many composite girder bridges have been constructed for about thirty five years. Nowadays they are aged or deteriorated because of the increase in traffic and vehicle loads. In this study, the effect of strengthening with glass fiber sheet is investigated to estimate the possibility for applying to damaged prestressed concrete bridges. One normal and eight cracked specimens which had been preloaded were tested. The cracked specimens were strengthened with either external prestressing or bonding glass fiber sheet, or using both methods. The results showed that the maximum loads are almost same for both methods. So it seems that the strengthening with glass fiber sheet can be used for strengthening damaged prestressed concrete girders. It is important that proper devices should be selected to prevent glass fiber sheet from premature bonding failure below its maximum load, which is similar to end anchorage problem in external prestressing method. It is proved that the devices proposed in this paper have sufficient anchoring capability to increase load carrying capacity.

The Effect of the Variation of a Wind Speed on the Stability of a Container Crane (풍속변화가 컨테이너 크레인의 안전성에 미치는 영향)

  • Lee, Seong-Wook;Shim, Jae-Joon;Han, Dong-Seop;Han, Geun-Jo;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.433-438
    • /
    • 2005
  • This study was carried out to analyze the effect of the variation of a wind speed on the stability of a container crane. The wind load according to 'The Requirement of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Structures' enacted by the ministry of construction & transportation was evaluated. And the uplift forces of a container crane under this wind load were calculated by analyzing reaction forces at each supporting point and compared with each other. The analytic model was a container crane with uplift capacity of 50ton which was widely used in port.

  • PDF