• Title/Summary/Keyword: 교통이용행태

Search Result 305, Processing Time 0.025 seconds

A Study on the Intercity Mode Choice Behavior of Daegu Citizens According to the Introduction of Gyeongbu High-Speed Railway (경부 고속철도 개통에 따른 대구시민의 지역 간 통행수단 선택행태 분석에 관한 연구)

  • Yun, Dae-Sik;Yuk, Tae-Suk;Kim, Sang-Hwang
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.29-38
    • /
    • 2006
  • After the first opening of the KTX in April 2004, travel time between major cities has been dramatically reduced. The reduction rates range from 32% to 47%. Considering travel time reduction between major cities, this study concerned about the intercity travel impact of the KTX operation. This study aimed to analyze intercity mode choice behavior of Daegu Citizens according to the first opening of the KTX. This study takes place in two sections. These are (i) the section of KTX between Daegu and Seoul, and (ii) the section of KTX between Daegu and Daejeon. This study estimated empirical models for analyzing intercity mode choice behavior according to the first opening of the KTX. This study makes use of the data from travel survey from Daegu metropolitan area. The main part of the survey was carried out in the KTX Dong-Daegu station. The survey data includes the information on travel from Daegu to Daejeon and from Daegu to Seoul. In order to analyze intercity choice behavior according to the frist opening of the KTX, multinomial model structure is used. For the model specification, a variety of behavioral assumptions about the factors which affect the mode choice, were considered. From the empirical model estimation, it is found that OVTT(Out-of-Vehicle Travel Time), OVTC(Out-of-Vehicle Travel Cost), IVTT(In-Vehicle Travel Time), IVTC(In-Vehicle Travel Cost), travel frequency, travel purpose, sex, age, occupation. household income, individual income are significant in choosing intercity travel mode. However, it is found that the intercity nde choice behavior is different between (i) the section of KTX between Daegu and Seoul, and (ii) the section of KTX between Daegu and Daejeon. Furthermore, some policy implications are discussed in conclusion.

Developing Design Guidelines for Rest Area Based on the Traffic Safety (교통안전을 고려한 고속도로 휴게소 설계기준 개발)

  • Lee, Hyun-Suk;Lee, Eui-Eun;Seo, Im-Ki;Park, Je-Jin
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.173-182
    • /
    • 2012
  • Entry and exits of the rest area are sections where designed speed can be rapidly change and also a weak traffic safety section. In addition, two tasks can be performed simultaneously at entry of the rest area, particularly searching for deceleration and parking spaces/parking sides etc. Thus, design criteria is required in order to procure the stability of accessed vehicle. In case of Korea, geometric structure design criteria of entry facilities, such as toll-gate, interchange, junction etc was established. However there are no presence in a detailed standards for geometric structure of the rest area which affiliated road facilities. In this study, Derive problems in regards to the entry of geometric structure of resting areas by utilizing a sight survey and an investigation research of traffic accidents. The survey was targeting 135 general service areas. After Classifying the design section of resting areas' entry as well as derive design elements on each section, a speed measurement by targeting entry of rest areas and car behavior surveys were performed, then each element's minimum standard was derived through the analyses. According to the speeds at the starting/end point of entrance connector road, the minimum length of the entrance connector road is decided as 40m using Slowing-down length formula and based on the driving pattern, the range of the junction setting angle of the entrance connector road is defined as $12^{\circ}{\sim}17^{\circ}$. Suggest improvement plans for existing rest areas that can be applied realistically. This should be corresponded to the standards of entry and exit of developed rest areas.

Analysis of the Effectiveness of Tunnel Traffic Safety Information Service Using RADAR Data Based on Surrogate Safety Measures (레이더 검지기 자료를 활용한 SSM 기반 터널 교통안전정보 제공 서비스 효과분석)

  • Yongju Kim;Jaehyeon Lee;Sungyong Chung;Chungwon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.73-87
    • /
    • 2023
  • Furnishing traffic safety information can contribute to providing hazard warnings to drivers, thereby avoiding crashes. A smart road lighting platform that instantly recognizes road conditions using various sensors and provides appropriate traffic safety information has therefore been developed. This study analyzes the short-term traffic safety improvement effects of the smart road lighting's tunnel traffic safety information service using surrogate safety measures (SSM). Individual driving behavior was investigated by applying the vehicle trajectory data collected with RADAR in the Anin Avalanche 1 and 2 tunnel sections in Gangneung. Comparing accumulated speeding, speed variation, time-to-collision, and deceleration rate to avoid the crash before and after providing traffic safety information, all SSMs showed significant improvement, indicating that the tunnel traffic safety information service is beneficial in improving traffic safety. Analyzing potential crash risk in the subdivided tunnel and access road sections revealed that providing traffic safety information reduced the probability of traffic accidents in most segments. The results of this study will be valuable for analyzing the short-term quantitative effects of traffic safety information services.

Travel Pattern Analysis Using TCS Data and GIS in Korea (TCS 자료 및 GIS를 이용한 한국의 통행패턴 분석)

  • Kim, Jae-Hun;Chung, Jin-Hyuk;Choi, Min-Hwan;Chang, Hoon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.75-84
    • /
    • 2008
  • In 2002, the 5-day workweek policy was effective in Korea. As we have expected, the 5-day workweek policy has changed people's travel behavior during weekdays and weekends. Several studies have been done to understand these changes and impacts on transportation systems. However, these studies have only focused on travel pattern changes without considering spatial factors. Said in another way, although individual travel pattern changes are usually investigated, indices adopted cannot describe travel pattern changes in a proper way due to lack of the spatial distribution measure. This study aims to analyze travel change since the 5-day work week policy in effect using a new index (i.e. Travel Vector Index) developed in this study, which can explain travel pattern changes in terms of magnitude and spatial point of views. The new index uses a GIS technology and TCS (Toll Collection System) databases in Korea. The results in this study show that the index is very useful and reliable to measure the travel patterns changes. They are applied to TCS data set and the results show that the 5-day workweek policy significantly affects on travel behaviors.

Development of a Critical Value According to Dangerous Drive Behaviors (위험운전 유형에 따른 임계값 개발)

  • Oh, Ju-Taek;Cho, Jun-Hee;Lee, Sang-Yong;Kim, Young-Sam
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.69-83
    • /
    • 2009
  • According to the accident statistics of 2006, it can be recognized that drivers' characteristics and driving behaviors are the most causational factors on the traffic accidents. At present, many recording tools such as digital speedometer or black box are distributed in the market to meet social requests of decreasing traffic accidents and increasing safe driving behaviors. However, it is also true that the system preventing any possible vehicle accidents in advance has not been developed. In this study, we developed critical value for deciding dangerous driving behaviors. The developed critical value could be used to contribute to safety driving management systematization and safety driving behaviors.

  • PDF

A Study on Selecting Geospatial Framework Data Using Factor Analysis (요인분석을 이용한 기본공간정보 선정에 관한 연구)

  • Choe, Byong Nam;Lee, Ji Hun;Park, Jin Sik;Kang, In Gu
    • Spatial Information Research
    • /
    • v.23 no.5
    • /
    • pp.53-64
    • /
    • 2015
  • Several countries have built National Spatial Data Infrastructure (NSDI) for information sharing among various fields. One of the important factors of NSDI is framework data, which is the most commonly used geospatial data across various fields. Previous studies on the framework data suggest components based on frequency survey and case study. However, such research methods do not have objectivity in setting the components of the framework data. This research uses factor analysis with 104 medium-level layers from the most widely used National Base Map and 5 layers from the other sources including cadastre and aerial image. Each layer is scaled with usage level as four different patterns of 1) background data, 2) reference data, 3) base data, and 4) other data, respectively. The analysis results show that the layers are grouped into 5 to 7 factors according to the patterns. ANOVA reveals that the mean differences between the factors with high values and the other factors with low values under each pattern are statistically significant. Such high value factors under each pattern consist of similar layers, close to identical, with those under the other categories. This research proposes framework data system, including transportation, building, hydrography, elevation, administrative district, digital orthoimagery, geodetic control, and cadastral based on the analysis results. Proposed framework in this research will be a basis of establishing spatial data sharing system. For sharing proposed framework data in various fields, these data must be established and distributed as actual standard and also related future researches should be performed.

Development and Application of the Mode Choice Models According to Zone Sizes (분석대상 규모에 따른 수단분담모형의 추정과 적용에 관한 연구)

  • Kim, Ju-Yeong;Lee, Seung-Jae;Kim, Do-Gyeong;Jeon, Jang-U
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.97-106
    • /
    • 2011
  • Mode choice model is an essential element for estimating- the demand of new means of transportation in the planning stage as well as in the establishment phase. In general, current demand analysis model developed for the mode choice analysis applies common parameters of utility function in each region which causes inaccuracy in forecasting mode choice behavior. Several critical problems from using common parameters are: a common parameter set can not reflect different distribution of coefficient for travel time and travel cost by different population. Consequently, the resulting model fails to accurately explain policy variables such as travel time and travel cost. In particular, the nonlinear logit model applied to aggregation data is vulnerable to the aggregation error. The purpose of this paper is to consider the regional characteristics by adopting the parameters fitted to each area, so as to reduce prediction errors and enhance accuracy of the resulting mode choice model. In order to estimate parameter of each area, this study used Household Travel Survey Data of Metropolitan Transportation Authority. For the verification of the model, the value of time by marginal rate of substitution is evaluated and statistical test for resulting coefficients is also carried out. In order to crosscheck the applicability and reliability of the model, changes in mode choice are analyzed when Seoul subway line 9 is newly opened and the results are compared with those from the existing model developed without considering the regional characteristics.

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Analysis of Lane-Changing Distribution within Merging and Weaving Sections of Freeways (고속도로 합류 및 엇갈림구간에서의 차로변경 분포 분석에 관한 연구)

  • Kim, Yeong-Chun;Kim, Sang-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.115-126
    • /
    • 2009
  • The lane-change behavior usually consists of discretionary lane-change and mandatory lane-change types. For the first type, drivers change lanes selectively to maintain their own driving condition and the second type is the case that the drivers must change the current lane, which can occur in recurrent congestion sections like merging and weaving sections. The mandatory lane-change behavior have a great effect on the operation condition of freeway. In this paper, we first generate data such as traffic volumes, speeds, densities, and the number of lane-change within the merging and weaving sections using the data of individual vehicle collected from time-lapse aerial photography. And then, the data is divided into the stable and congested flow by analyzing the speed variation pattern of individual vehicles. In addition, the number of lane-changing from ramp to mainline within every 30-meter interval is investigated before and after traffic congestion at study sites and the distribution of lane-changing at each 30-meter point is analyzed to identify the variation of lane-changing ratio depending on the stable and congested flows. To recognize the effect of mainline flow influenced by ramp flow, this study also analyzes the characteristics of the lane-changing distributions within the lanes of mainline. The purpose of this paper is to present the basic theory to be used in developing a lane-changing model at the merging and weaving sections on freeways.

Development of Free Flow Speed Estimation Model by Artificial Neural Networks for Freeway Basic Sections (인공신경망을 이용한 고속도로 기본구간 자유속도 추정모형개발)

  • Kang, Jin-Gu;Chang, Myung-Soon;Kim, Jin-Tae;Kim, Eung-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.109-125
    • /
    • 2004
  • In recent decades, microscopic simulation models have become powerful tools to analyze traffic flow on highways and to assist the investigation of level of service. The existing microscopic simulation models simulate an individual vehicle's speed based on a constant free-flow speed dominantly specified by users and driver's behavior models reflecting vehicle interactions, such as car following and lane changing. They set a single free-flow speed for a single vehicle on a given link and neglect to consider the effects of highway design elements to it in their internal simulation. Due to this, the existing models are limitted to provide with identical simulation results on both curved and tangent sections of highways. This paper presents a model developed to estimate the change of free-flow speeds based on highway design elements. Nine neural network models were trained based on the field data collected from seven different freeway curve sections and three different locations at each section to capture the percent changes of free-flow speeds: 100 m upstream of the point of curve (PC) and the middle of the curve. The model employing seven highway design elements as its input variables was selected as the best : radius of curve, length of curve, superelevation, the number of lanes, grade variations, and the approaching free-flow speed on 100 m upstream of PC. Tests showed that the free-flow speeds estimated by the proposed model were statistically identical to the ones from the field at 95% confidence level at each three different locations described above. The root mean square errors at the starting and the middle of curve section were 6.68 and 10.06, and the R-squares at these points were 0.77 and 0.65, respectively. It was concluded from the study that the proposed model would be one of the potential tools introducing the effects of highway design elements to free-flow speeds in simulation.