This paper presents the travel demand estimation using interval estimation methods during the trip generation stage, and then followed the other three stages of the four stage trip estimation. We have used real data of Dae-jun City. To estimate travel demand using the interval estimation method, a reliability level was set to 95% by a upper bound value, a middle value and a lower bound value. The four stage traffic demand analysis procedure was equally applied and finally interval traffic was estimated. The result showed a difference between maximum values and middle values depending on the destination during the trip generation stage. It depends on an explanation ability of regression analysis. Most of interval estimation ratio resulted in the traffic assignment stage showed ${\pm}5{\sim}18%$ difference on the average and ${\pm}30{\sim}50%$ at the most.
전통적인 OD조사에 의한 OD추정의 여러 문제점들로 인해 링크관측교통량과 기존OD를 결합해 OD를 추정하고자 하는 연구들이 제시되고 있다. Yang(1995)은 일반화최소자승법을 풀기 위한 IEA와 SAB 알고리즘을 제시하였다. 그러나 두 알고리즘의 문제점은 첫째 실제 OD를 알기가 어렵기 때문에 기존 OD를 중요한 추정기준으로 설정한다는 것으로, 이러한 추정의 종속성으로 인해, 기존 OD와 실제 OD의 차이가 큰 경우 정확한 해를 도출하지 못한다. 두 번째 문제는 통행패턴 추정시 선형근사화를 가정하기 때문에 게임이론적 측면에서 전제로 설정한 완전한 Stackelberg 상황을 구현하지 못한다는 것이다. 이러한 문제점을 피하기 위해서는 기존 OD나 관측교통량의 오차에 일관적인 해도출 기법이 필요하다. OD추정 문제는 본질적으로 비선형이고 비볼록하여 전역해 탐색기법이 필요하기 때문에 전역최적화가 가능한 유전알고리즘을 이용한 OD추정모형(GAM)을 개발하였다. 사례네트워크 분석결과, GAM은 기존 OD의 오차에 대해 크게 종속적이지 않으며 OD구조가 변하는 경우에도 추정이 가능하여, 일반적으로 실제 OD를 알 수 없는(기존OD의 오차가 어느 정도인지를 알 수 없는) 도시부 네트워크에서 신뢰성있는 추정력을 보였다. 또한 기존 OD 추정모형은 비교적 용이하게 차종별로 관측할 수 있는 링크교통량을 차종구분 없이 단일차종으로 이용함으로써, 정보의 손실을 초래하여 결과적으로 모형의 추정력을 저하시켰다. 그렇지만 다차종 링크관측교통량으로부터 다차종 OD 추정연구는 거의 없었으며, 그 결과가 단일차종에 대한 추정결과와 어떻게 다른지에 대한 연구도 전무하였다. 본 연구에서는 유전알고리즘을 이용한 OD 추정모형을 다수단 OD 추정모형(GAMUC)으로 확대하였다. 사례 분석 결과 단일차종 OD추정기법은 심각한 추정오류를 범할 수 있으며, 그 적용성도 낮다는 것을 보였다. 다차종 OD 추정기법이 단일차종 OD 추정기법보다 양호한 추정력을 보였으며, 다차종 기법 중에서는 GAMUC가 IEAMUC보다 우수한 추정력을 보였다.
교통수요는 교통정책 및 교통시설 계획의 수립 및 평가에 중요한 영향을 미치게 되므로 교통수요의 예측은 교통연구에서 중요한 부문을 차지하고 있다. 도로밑에 설치된 전자차량감지기(Electronic Vehicle Detector)로부터 자동 수집된 링크 교통량 자료(Traffic Counts)를 주요 입력자료로 이용하여 계획지역의 기종점 통행표(Origin Destination Trip Matrix)를 작성할 수 있는 기법 들이 최근 수년동안 많이 발달하게 되었다. 이러한 새로운 기법들은 가구조사(Home Inteview), 노변면접조사(Road-Side Interview)등을 토하여 조사된 자료를 기초로하는 전통적은 4단계 교통수요추정방법(Conventional 4-Stage Estimation Method)-통행발생(Generation), 통행분포(Distribution), 수단선택(Modal Split), 교통배분(Assignment)-과 비교하여 첫째로 정확도가 높은 링크 교통량 자료를 별도의 조사를 거치지 않고서도 수집이 가능하기 때문에 조사비용이 거의 들지 않아도 되어 경제적이고, 둘째로 전통적인 수요예측방법들에서 요구되어지는 복잡한 모형수립 및 계수조정(Parameter Calibration)이 필요하지 않아 간편하고 셋째로 오래전에 작성된 기종점 통행표를 단순히 링크 교통량 자료만을 이용하여 쉽게 보완할 수 있어 지속적인 자료의 축적(Data Age-ing)이 가능하며 더 나아 가서 소위 연속적인 교통 계획 및 교통시설관리(Continuous Transport Planning and Management)를 가능케 하는 등의 여러 장점 때문에 많은 주목을 받아 오고 최근 몇 년이 꾸준히 실무에 유용하게 적용이 되고 있는 실정이다. 본 연구는 링크 교통량자료를 이용하여 기종점 통행표를 작성하기 위하여 개발된 기존의 여러 기법들 가운데 특히 용량제약조건(Capacity-Restrained Condition)하에서 기존의 방법들을 상호 검토한 후 Wardrop의 교통망 평형원칙(Wardrop's First Network Equilibrium Principle)을 만족하는 새로운 추정기법을 제의하고 이의 시험결과를 논의하는 것을 주요내용으로 한다. 링크 교통량 자료를 이용하여 기종점 통행표를 작성하는 기법들의 근본 목표는 조사된 링크 교통량(Ob-served Traffic Counts)에 가장 근접한 교통망 통행 배정 링크 교통량(Assigned Link Volumes)을 재현(Re-producing)할 수 있는 기종점 통행표들 중에서 최적의 기종점 통행표를 발견하는 것이다. 따라서 교통망에서 통행자의 여행 경로 배정을 가장 잘 반영할 수 있는 현실적인(Realistic) 교통망 통행 배정 모형(Net-work Traffic Assignment Model)의 선택은 중요한 요소가 되며 특히 교통망에 교통체증(Traffic Conges-tion)이 심할 경우 교통망 통행자 평형조건(Network Traffic Equilibrium Condition)을 고려하기 위한 특별한 처리가 요구되어진다. 본 연구는 Whllumsen(Hall, Van Vliet and Willumsen, 1980)에 의하여 개발된 ME2(Maximum Entropy Matrix Estimation)기법에서 반복식 추정방법(Sequential Estimation Method)을 사용할 경우 Wardrop의 평형조건을 만족하는 기종점 통행표를 구할 수 없다는 단점을 극복하기 위한 방안으로서 엔트로피 극대화문제와 교통망 평형 조건(Entropy Maximisation and Network Equilibrium Condition)의 두 문제를 동시에 해결할 수 있는 새로운 수식모형과 이를 풀기 위한 알고리즘(Simultaneous Solution Algorithm)을 제의하였다. 제의된 수식모형과 알고리즘을 예제 교통망(Example Network)을 이용한 시험하고 그 결과를 ME2 의 반복식 추정 방법으로부터 구한 기종점 통행표와 비교 검토하였다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.11
no.2
/
pp.10-20
/
2012
This study shows how to estimate AADT(Annual Average Daily Traffic) on temporary count data using new grouping method. This study deals with clustering permanent traffic counts using monthly adjustment factor, daily adjustment factor and a percentage of hourly volume. This study uses a percentage of hourly volume comparing with other studies. Cluster analysis is used and 5 groups is suitable. First, make average of monthly adjustment factor, average of daily adjustment factor, a percentage of hourly volume for each group. Next estimate AADT using 24 hour volume(not holiday) and two adjustment factors. Goodness of fit test is used to find what groups are applicable. MAPE(Mean Absolute Percentage Error) is 8.7% in this method. It is under 1.5% comparing with other method(using adjustment factors in same section). This method is better than other studies because it can apply all temporary counts data.
To assess the port development and maritime traffic environment, the future traffic volume has been estimated using the number of inbound and outbound vessel for a specific port. The estimation of future traffic volume should be considered as an important factor to establish the degree of fairway congestion, the determination of fairway width and the operational role. Until now, the number of in and out vessel for the port has been only estimated mainly, but the type and size of inbound and outbound ships are different depending on the port's characteristics. So, it is difficult to estimate the future traffic volume using the change of only one item. This paper calculates the future traffic volume using the marine traffic characteristic factors as the number of coastal ship and ocean-going ship, the size of ship and the change of cargo volume per a ship etc. And it compared with the results of Artificial Neural Network(ANN) for accurate identification of nonlinear system.
Until recently, we use only weekly and monthly adjustment factors in order to estimate the AADT. By the way. we can suppose that the traffic is time series data related to flow of time. So we tried to analyse traffic patterns using time series analysis and apply them to estimate the AADT. We could divide traffic patterns into trend, cyclic variation, seasonal variation and irregular variation like as time series data. Also, in order to reduce random error components, we have looked for the weather conditions as an influential factor. There are many weather conditions such as rainfalls, but, temperatures, and sunshine hours among others but we selected rainfalls and lowest temperatures. And then, we have estimated the AADT using time series factors. To compare the results of, we have applied both irregular variation joined to weather factors and that not joined to. RMSE and U-test were opted at methods to appreciate results of AADT estimation.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.1D
/
pp.11-16
/
2009
The estimation of total travel time on highway link for a day or year is the most important process for the feasibility analysis of highway or railway. Most of current guidelines for feasibility studies have been based on the time-traffic volume relationship from the BPR, and the traffic volumes have been determined by the application of the design hour factor to the annual average daily traffic volume. Both of the BPR function and the application of the design hour volume may result in the over-estimation of travel time due to the fact that the traffic volume on the large portion of highway links in Korea are close to the capacities. This study proposed a new way which is based on the distribution of hourly volumes for a year. It could be closer to the real situation, and provide more reasonable estimation. This methodology was validated for the national highways, but may be applicable for any type of highway with the AADT.
The Origin-Destination(OD) matrix is very important in describing transport movements in a region. The OD matrix can be estimated using traffic counts on links in the transport network and other available information. This information on the travel is often contained in a target OD matrix and traffic counts in links. To estimate an OD matrix from traffic counts, they are the major input data which obviously affects the accuracy of the OD matrix estimated, Generally, the quality of an estimated OD matrix depends much on the reliability of the input data, and the number and locations of traffic counting points in the network. Any Process regarding the traffic counts such as the amount and their location has to be carefully studied. The objective of this study is to select of the optimal location of traffic counting points for the OD matrix estimation. The model was tested in nationwide network. The network consists of 224 zones, 3,125 nodes and 6,725 links except to inner city road links. The OD matrix applied for selection of traffic counting points was estimated to 3-constrained entropy maximizing model. The results of this study follow that : the selected alternative to the best optimal counting points of six alternatives is the alternative using common links of OD matrix and vehicle-km and traffic density(13.0% of 6,725 links), however the worst alternative is alternative of all available traffic counting points(44.9% of 6,725 links) in the network. Finally, it should be concluded that the accuracy of reproduced OD matrix using traffic counts related much to the number of traffic counting points and locations.
본 논문의 목적은 교통계획 및 투자 사업의 평가에 있어 대기오염 요소를 고려하기 위해 필수적인 기초자료인 대기오염에 의한 경제적 가치를 추정함에 있다. 이를 위하여 가상적인 주택선호자료를 바탕으로 대기오염 개선에 대한 가구의 지불용의액을 추정하고 이를 바탕으로 대기오염 피해의 화폐적 가치를 추정한다 특히, 국내에서는 적용된 바 없지만 마아케팅 및 교통수요 분석 부문에 있어 시간가치, 교통수단의 안락감 등 비계량적 요소의 경제적 가치 측정에 많이 사용되는 SP(Stated Preference)기법을 사용해서 대기오염 피해에 대한 화폐가치를 추정한다. 연구결과 가구의 점유형태에 따라 대기오염에 대한 경제적 가치가 유의적인 차이가 존재하며 도로교통에 의한 대기오염 1%의 경제적 가치는 240만원/가구.년으로 분석되었다. 대기오염물질별 경제적 가치를 살펴보면 $O_3$ 0.01ppm의 경제적 가치는 55.40만원/가구.년, N$O_2$ 0.01ppm 18.33만원/가구.년으로 추정되었다. 본 연구를 통해 교통투자사업의 평가에 있어 환경적 요소를 고려할 수 있는 기초자료를 마련하였으며, 교통분야 뿐만 아니라 환경관련 정책의 수립 분석에 중요한 기초 결과가 제시되었다. 본 결과가 교통분야에 더욱 유용하게 사용되기 위해서는 교통투자사업 또는 교통관리에 따른 교통량의 변화와 대기오염물질 배출량의 관계에 대한 연구가 추가적으로 필요하다고 판단되며 이 연구가 이루어지면 본 연구가 제시한 결과치는 교통투자사업의 편익/비용 분석에 중요하게 사용될 수 있을 것으로 판단된다. 본 연구의 한계로서는 조사지역이 전국에서 환경오염이 심한 서울지역에서 조사가 한정되었다는 점이며 이에 대한 앞으로의 연구가 필요하다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.35
no.4
/
pp.887-896
/
2015
This study estimates future AADT using historical AADT and socio-economic factors in isolated area. Multiple linear regression method by socio-economic factors are lower MAPE and higher R-square than using historical AADT. Analysis of socio-economic factors influence AADT in isolated typical areas, varied socio-economic factors influence on AADT. In isolated coastal areas, oil price influence on AADT. AADT forecasting model in isolated area is excellent when analysising $R^2$ and MAPE. It is assume that estimation of AADT in isolated area using multiple linear regression is accurate because of a little passed traffic volume and traffic volume fluctuation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.