• Title/Summary/Keyword: 교차축 연동제어

Search Result 12, Processing Time 0.025 seconds

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

Cross-Coupling Controller for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 교차축 연동제어기)

  • Jee, Sung-Chul;Lee, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.446-451
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) algorithm with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

Adaptive Cross-Coupling Control for High-Speed Nonlinear Contour Machining (고속의 비선형 윤곽가공을 위한 적응 교차축 연동제어)

  • Lee, Yong-Seok;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.108-114
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control(CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy more effectively than the existing method.

  • PDF

Adaptive Cross-Coupling Controller for Precision Contour Machining (정밀 윤곽가공을 위한 적응 교차축 연동제어기)

  • 윤상필;지성철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.8-13
    • /
    • 2000
  • In this paper, a new adaptive cross-coupling control (CCC) method with an improved contour error model is proposed to maintain contouring precision in high-speed nonlinear contour machining. The proposed method utilizes variable controller gains based on the instantaneous curvature of a contour and the feedrate command. In addition, a real-time federate adaptation scheme is included in the proposed CCC to regulate cutting force. The proposed method is evaluated and compared with the conventional CCC for nonlinear contouring motion through computer simulations. The simulation results show that the proposed CCC improves the contouring accuracy and regulates cutting force more effectively than the existing method.

  • PDF

Integrated Controller Design for Multi-Axis CNC Systems (다축 CNC 시스템의 통합형 제어기 설계)

  • Lee Hak-Chul;Jee Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.93-102
    • /
    • 2006
  • This paper proposes a controller design analysis for three-axis CNC systems considering both contouring and tracking performance. The proposed analysis inclusively combines axial controllers for each individual feed drive system together with cross-coupling controller at the beginning design stage as an integrated manner. These two controllers used to be separately designed and analyzed since they have different control objectives. The proposed scheme includes a stability analysis for the overall control system and a performance analysis in terms of contouring and tracking accuracy. Computer simulation is performed and the results show the validity of the proposed methodology. Further, the results can be used as a basic guideline in systematic and comprehensive controller design for multi-axis CNC systems.

Nonlinear Adaptive Control for A Linear-Motor-Driven Two Axes through A Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 통한 리니어 모터의 비선형 적응제어)

  • Han, Sang-Oh;Hwang, Woo-Hyun;Lee, Sang-Min;Huh, Kun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.902-906
    • /
    • 2008
  • The linear motors are easily affected by load disturbance, force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbance. For highspeed/high-accuracy position control of a linear-motor-driven two axes, a nonlinear adaptive controller including a cross-coupling algorithm is designed in this paper. The nonlinear effects such as friction and force ripple are estimated and compensated. An enhanced approach for cross-coupling algorithm is proposed to effectively improve the biaxial contour accuracy with the closed-loop stability. The proposed controller is evaluated through the computer simulations.

  • PDF

Signal Optimization Model Considering Traffic Flows in General Traffic Networks (일반적인 네트워크에서의 신호최적화모형 개발 연구)

  • 신언교;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Most existing progression bandwidth models maximize the single or multi weighted sum of bandwidths in the both directions to improve traffic mobility on an arterial, but they cannot be applied to general networks. Even though a few models formulating a looped network problem cannot be applied to networks have not loops. Also they have some defects in optimizing phase sequences. Therefore, the objective of this study is to develope a mathematical formulation of the synchronization problem for a general traffic network. The goal is achieved successfully by introducing the signal phasing for each movement and expanding the mixed integer linear programming of MAXBAND. The experiments indicate that the proposed model can formulate the general traffic network problem mere efficiently than any other model. In conclusion, this model may optimize signal time to smooth progression in the general networks.

  • PDF

Traffic Signal Control Methods for Functional Improvements in COSMOS (COSMOS 안정화를 위한 교통축 및 감응제어 방법연구)

  • 이승환;오영태;이상수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.31-43
    • /
    • 2002
  • Traffic signal control methods are suggested to improve the operational effectiveness of COSMOS system in Seoul. First. a method that improves progression of the corridor traffic flow within a common sub-area was explored. Applying this method, both frequency and magnitude of offset transition were reduced as compared to the existing method. In addition, the level of connection among neighboring corridors increased by applying the method, thus the qualify of progression was also improved. Second, a practical guideline on signal phase design was proposed to improve the efficiency of actuated operations for the left-turn movement. Last, a method for estimating optimal queue length parameters was surveyed and evaluated. An evaluation study was performed for the suggested methods through both field and simulation studies. Results showed that the proposed methods gave better performance than the existing methods. It is expected that the use of proposed methods can improve operational performance of COSMOS.

A Multi-Axis Contour Error Controller for High-Speed/High-Precision Machining of Free form Curves (고속 고정밀의 자유곡선 가공을 위한 다축 윤곽오차 제어)

  • 이명훈;최정희;이영문;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.64-71
    • /
    • 2004
  • The growing need for higher precision and productivity in manufacturing industry has lead to an increased interest in computer numerical control (CNC) systems. It is well known fact that the cross-coupling controller (CCC) is an effective method for contouring applications. In this paper, a multi-axis contour error controller (CEC) based on a contour error vector using parametric curve interpolator is introduced. The contour error vector is a vector from the actual tool position to the nearest point on the desired path. The contour error vector is the closest error model to the contour error. The simulation results show that the CEC is more accurate than the conventional CCC for a biaxial motion system. In addition, the experimental results on 3-axis motion system show that the CEC is simply applied to 3-axis motions and contouring accuracy is significantly improved.