• Title/Summary/Keyword: 교전실험

Search Result 29, Processing Time 0.027 seconds

Rifle performance improvement cost estimation through Relation between the accuracy and Engagement results Using the Engagement class simulation model (명중률과 교전결과의 상관관계분석을 통한 개인화기 성능개선비용 추정 : 교전급 분석모델을 중심으로)

  • TaeKyeom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.289-295
    • /
    • 2024
  • This study analyzes the correlation between the accracy of rifle and the result of engagement. And estimates the improvement cost of the rifle accordingly. For this experiment, an engagement class simulation model(AWAM: Army Weapon Effectiveness Analysis Model) was used. We also selected the rifle, which is a portable weapon for the experiment. Prior to this experiment, we conducted a reliability test(VV&A: Verification, Validation and Accreditation) on the model. The VV&A process is mainly done during the development of the DM&S model, which is also necessary for the operation of the M&S. We confirmed the need for VV&A during the experiment and obtained reliable experimental results using the corrected values. In the Accuracy Experiment we found that the 20% improvement is the most effective. And we were able to estimate the cost of acquiring a rifle with a 20% higher accuracy. The cost was estimated by simple regression analysis based on the price of the current rifle. Through this study, we could know the impact of the accuracy of rifle on the experimental results and estimate the cost of improved rifle.

Association between Object and Sonar Target for Post Analysis of Submarine Engaged Warfare Simulation (잠수함 교전 시뮬레이션의 사후분석을 위한 객체와 소나 표적간의 연관 기법)

  • Kim, Junhyeong;Bae, Keunsung
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a method to generate the object-target identifier mapping information for system performance and effectiveness analysis of submarine engage system and verify the validity of the proposed method through experiments. In the submarine model of the engage simulator, the signal processing algorithm of the actual sonar system is installed. In the target information obtained through the sonar or signal processing process, the actual object information is not known, and the simulator does not provide such information. Therefore, in this study, we generated identifier mapping information for simulation post-analysis by using bearing, range, and speed of the target obtaind from sonar signal processing and the object collected.

Development of C2 Virtual Linked Simulator For Engineering and Engagement Level Battle Experimentation (공학-교전급 전투실험을 위한 C2 가상모의 연동 시뮬레이터 개발)

  • Lee, Sangtae;Lee, Seungyoung;Hwang, Kun-Chul;Kim, Saehwan;Lee, Kyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • The Korean naval weapon systems, combat experiments establish the concept of Battle operations, and create the future of the new weapons system. Doctrine development and training as well as ranging from experiments for evaluate the performance of mission operations for combat experiments are used. The battle lab is effectively support tool for the Korean Naval battle experiments. The battle lab is through a dedicated testing facility and to build efficient and effective simulation-based acquisition supporting environment. In this paper, the ship / submarines C2 operations virtual simulator was developed to support the concept of Battle operations of naval combat experiments in training and tactical development. The ship C2 operations virtual simulator makes the anti-ship and anti-aircraft the engagement scenario for performed experiments using the SADM. The submarines C2 operations virtual simulator makes the anti-submarine engagement scenario for performed experiments using EAS. EAS System was created before reuse. EAS system by modifying the additional interfaces HLA-RTI has been reused. Reflected in the tactics and training after analysis of the results through the battle experiment. Also increase training fidelity through operator involvement. The anti-ship and anti-aircraft system architecture (SADM) and anti-submarine system architecture (EAS) requires unique design of system framework since two separate architectures should be integrated into a system. An C2 virtual linked architecture was used to integrate different system architecture. A C2 virtual linked software framework, designed that have integrated protocol for battle experimental linkage and battlefield visualization environment.

Development of Underwater Warfare Models on the Naval Weapon Systems (해군무기체계 수중교전 모델 라이브러리 개발)

  • Han, Seungjin;Lee, Minkyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • ADD (Agency for Defense Development) has developed the naval warfare simulation environment (QUEST), this paper describes the model library of naval weapon systems for the application of underwater warfare simulation included in the QUEST. Models are basically developed in order to measure the effectiveness and tactical development of underwater engagement between ships and weapons. Analyzing the mission space of underwater engagement and the functionality of the legacy models, we define standards of the model structure and developed the model components. Each components are the well-defined environment, system, subsystem, algorithm models, and the interfaces are defined between them. Users can construct a model in an efficient way to various warfare scenarios using the re-usable model components and co-work with the common model library.

The Engagement HILS Technology Research in the Laboratory for Simulated Warfare between Electronic Warfare Equipment and High-speed Maneuvering Weapon System (실험실에서 전자전 장비와 고속 기동 무기체계 간 실 교전 모의용 조우 HILS 기술 연구)

  • Shin, Dongcho;Choe, Wonseok;Kim, Soyeon;Lee, Chiho
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • In this paper, we describe the implementation methods and algorithms for the various technologies and devices required for the construction of the engagement HILS(Hardware In the Loop Simulation) in the limited space to simulate the high-speed maneuvering encounter situation of the weapon system in 3-dimensional real world space. Through this research, we have been able to suggest ways to analyze the major design elements of future electronic warfare equipment through experiments simulating actual engagements between various high-speed maneuvering weapons systems and electronic warfare devices in the future battlefield. It was confirmed that the M&S technology could be used to eliminate technical risks, reduce development cost, and shorten development time in the future real system development. The results of this study can be a great assist not only for the field of electronic warfare system research and development, but also for the research & implementation on HILS of various engaging class weapons systems.

A Simulation Framework of Multi-Agent Based Small Engagement Using Cougaar Architecture (Cougaar Architecture 활용 다중 에이전트 기반 소규모 교전 시뮬레이션 Framework)

  • Hwam, Won-K.;Chung, Yong-Ho;Park, Sang-C.
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.101-109
    • /
    • 2011
  • M&S in the field of national defense is a battle system has been highly spotlighted for obtaining weapon systems, analyzing and experimentation of battle effects to reduce costs, time, and risks. It is classified as Campaign, Mission, Engagement, and Engineering levels by detail of description. In engagements, many situations on the battle field which are really unpredictable are required to be considered on the view of diverse tactics. Thus, engagement simulation is in demand to use for forecasting real-world battle situations by inserting various components which consists of real engaging situations into virtual local battle field. While developing the engagement simulation, adopting the concept of agent-based simulation gives it benefits which are improved autonomy, composability, and reusability of entities. It means reducing the time, cost and effort to develop the simulations. This paper concentrates on the framework of multi-agent based engagement simulation using Cougaar Architecture.

Research on Experimentation Methodology for Analysing Parameter Sensitivity of Hard-Kill Torpedo Defence System in Engagement Stage (하드-킬 어뢰 방어체계 최종 교전단계에서의 파라미터 민감도 분석을 위한 모의시험 모델 연구)

  • Cho, Hyunjin;Kim, Wanjin
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • This paper introduces experimental design and components model for analysing the impact of parameter(in the field of kinematics and sensor) on performance of hard-kill torpedo defence system. The simulation is implemented at the level of engagement and its scope is limited to final stage of engagement where main function of anti-torpedo system is operating. It improves the fidelity of physical realism by precise model of simulation components in the perspectives of kinematics, sensor capability and acoustic detection theory. This paper provides the experimentation methodology for evaluating parameter sensitivity which is required to analyze in advance of development the defense system with novel concepts. In addition, the experimental result shows the tendency of defense capability according to parameter adjustments.

Many-to-Many Warship Combat Tactics Generation Methodology Using the Evolutionary Simulation (진화론적 시뮬레이션을 이용한 다대다 함정교전 전술 생성 방법론)

  • Jung, Chan-Ho;Ryu, Han-Eul;You, Yong-Jun;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.79-88
    • /
    • 2011
  • In most existing warships combat simulation system, the tactics of a warship is manipulated by human operators. For this reason, the simulation results are restricted due to the stereotype of human operators. To deal with this, we have employed the genetic algorithm for supporting the evolutionary simulation environment. In which, the tactical decision by human operators is replaced by the human model with a rule-based chromosome for representing tactics so that the population of simulations are created and hundreds of simulation runs are continued on the basis of the genetic algorithm without any human intervention until to find emergent tactics which shows the best performance throughout the simulation. This paper proposes an evolutionary tactics generation methodology for the emergent tactics in many-to-many warship combat simulation. To do this, 3:3 warship combat simulation tests are performed.

Resupply Behavior Modeling in Small-unit Combat Simulation using Decision Trees (소부대 전투 모의를 위한 의사결정트리 기반 재보급 행위 모델링)

  • Seil An;Sang Woo Han
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.9-21
    • /
    • 2023
  • The recent conflict between Russia and Ukraine underscores the significant of military logistics support in modern warfare. Military logistics support is intricate and specialized, and traditionally centered on the mission-level operational analysis and functional models. Nevertheless, there is currently increasing demand for military logistics support even at the engagement level, especially for resupply using unmanned transport assets. In response to the demand, this study proposes a task model of the military logistics support for engagement-level analysis that relies on the logic of ammunition resupply below the battalion level. The model employs a decisions tree to establish the priority of resupply based on variables such as the enemy's level of threat and the remaining ammunition of the supported unit. The model's feasibility is demonstrated through a combat simulation using OneSAF.

Impact of MOPs on Effectiveness for M-to-M Engagement with the Counter Long Range Artillery Intercept System (다대다 교전 효과도에 있어서 각 요소 성능의 영향력 연구 - 장사정포 요격체계 시뮬레이션)

  • Yook, Jung Kwan;Hwang, Su Jin;Kim, Tae Gu
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.57-72
    • /
    • 2020
  • To respond to the threat of Long range artillery of North Korea, it is necessary to establish the Korean counter long range artillery intercept system(CLRAIS). The purpose of this study is to study the operational concept of the CLRAIS against the threat of long range artillery of North Korea, and to develop the operational effectiveness process of the CLRAIS. First, we set up the operating concept of the CLRAIS and established the concept of an effectiveness in a many-to-many engagement situation and a process to derive it. Based on this, a tool was developed to analyze the actual effectiveness. In order to find out the factors influencing the effectiveness in many-to-many engagement situations, simulation experiments were performed by combining various variables such as detection assets, engagement control, and launchpad performance. As a result, it was found that in addition to the missile performance, the performance of the detection assets and the engagement control center had a significant impact on the intercept rate and the defense success rate. These findings can be used to understand important indicators in terms of effectiveness in many-to-many engagement situations in the future development of weapon system, and to determine the development direction and target value of each element necessary for the level of defense success rate to be achieved.