• 제목/요약/키워드: 교수학의 인류학적 이론

검색결과 3건 처리시간 0.016초

인류학적 방법에 입각한 수열의 극한 교수에 대하여 (Toward Teaching of the Limit of Sequences Based on the Anthropological Method)

  • 김부윤;정경미
    • 대한수학교육학회지:학교수학
    • /
    • 제11권4호
    • /
    • pp.707-722
    • /
    • 2009
  • 이 논문에서는 최근 유럽, 특히 프랑스에서 많은 연구자들에 의해 고려되어지고 있는 수학 교육의 다양한 이론들을 소개한다. 그 중에서도 Chevallard (1985;1992;1998)에 의해 논의되었던 교수학의 인류학적 이론(The Antro-pological Theory of the Didactic)에 대해 간단히 소개한 다음, 이것에 의해 제안된 인식론적 모델인 인간행동학(Praxeology)에 대해 논의한다. 또한 교수학에 인류학을 도입해야 하는 필요성과 이 이론이 어떻게 교수학적 변환 과정을 통하여 발전되었는지 그 배경과 교수학의 인류학적 이론의 기본 요소들을 제시된다. 마지막으로 '수열의 극한' 교수에 대한 문제를 이 이론에 근거하여 분석한다.

  • PDF

교수학적 변환 연구의 동향과 과제 (Trends and Tasks in Research on Didactic Transposition in Mathematics Education)

  • 이경화
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제26권2호
    • /
    • pp.173-188
    • /
    • 2016
  • 교수학적 변환 관련 국내 연구는 약 25년 동안, 국외 연구는 약 35년 동안 이루어졌다. 본 연구는 국내와 국외에서 이루어진 교수학적 변환 관련 연구의 동향을 살펴보고 과제를 제안하는 데에 목표를 두었다. 연구결과는 다음과 같다. 첫째, 국내 연구에서는 교수학적 변환 이론이 수학교과서와 수학수업을 심층적으로 이해하는 관점이자 방법이 된다는 것을 구체적인 사례를 통하여 입증하는 데에 치중해왔다. 그동안 파악한 사례를 메타적으로 분석하거나 새롭게 설계하여 적용한 사례를 기초로 교수학적 변환 이론의 발전에 기여하는 연구가 이루어질 필요가 있다. 둘째, 국내에서도 수학교육학 외부의 연구 중에는 극단적인 교수 현상을 추가로 확인하거나 메타적으로 교과의 내용을 분석하는 것까지 시도한 경우가 있었다. 이들 연구를 수학교육학 내부의 논의맥락에서 재해석하여 시사점을 도출할 필요가 있다. 셋째, 실재 또는 실재의 복합체로서 학교수학을 이해하고 기술하려는 연구가 이루어질 필요가 있다. 국외에서는 이와 관련하여 다양한 연구가 이루어졌으므로 이를 국내실정에 부합되는 형태로 수정하여 적용함으로써, 우리나라 고유의 실재 또는 실재의 복합체가 무엇인지를 파악하여 개선하는 연구가 이루어질 필요가 있다. 넷째, 국외 연구에서는 교수학적 변환 이론을 인류학, 기술문명 시대의 인간과 교육, 인간행동학, 인식론 등 다양한 학문분야의 주요 개념과 연결해왔다. 국내 연구에서도 연구대상을 확장하고 다양한 연결을 시도할 필요가 있다. 다섯째, 국내 연구에서 사용하는 교수학적 변환 관련 개념과 용어에 대한 이론적인 논의가 필요하다.

ATD에 근거한 유리수의 대수학적 completion에 관한 연구 (The algebraic completion of the rational numbers based on ATD)

  • 김부윤;정경미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제50권2호
    • /
    • pp.135-148
    • /
    • 2011
  • We can say that the history of mathematics is the history on the development of the number system. The number starts from Natural number and is constructed to Integer number and Rational number. The Rational number is not the complete number analytically so that Real number is completed by the idea of the nested interval method. Real number is completed analytically, however, is not by algebra, so the algebraically completed type of the rational number, through the way that similar to the process of completing real number, is Complex number. The purpose of this study is to show the most appropriate way for the development of the human being thinking about the teaching and leaning of Complex number. To do this, We have to consider the proof of the existence of Complex number, the background of the introduction of Complex number and the background knowledge that the teachers to teach Complex number should have. Also, this study analyzes the knowledge to be taught of Complex number based on the anthropological theory of didactics and finally presents the teaching method of Complex number based on this theory.