• Title/Summary/Keyword: 교반

Search Result 1,507, Processing Time 0.031 seconds

Effect of agitation speed on the current efficiency of electrodeposited Ni-TiO2 (교반 속도가 Ni-TiO2 전기도금층의 전류효율에 미치는 영향)

  • Kim, Myeong-Jin;Kim, Jeong-Su;Kim, Dong-Jin;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.315-316
    • /
    • 2012
  • 전기도금법으로 제조한 $Ni-TiO_2$ 복합체에 교반 속도가 전류효율에 미치는 영향을 연구하였다. 교반은 공기를 불어넣은 공기교반과 자석막대를 회전시킨 자석교반으로 나누어 실시하였다. 교반 속도는 공기교반의 경우에는 0.5, 1.0, 1.5 L/min, 자석교반의 경우에는 100, 200, 300, 400, 500 rpm으로 변화시켜 $Ni-TiO_2$ 복합체의 전류효율과 순수 니켈의 전류효율 변화를 관찰하였다. 순수 니켈의 경우 전류효율이 두 종류의 교반 방식 모두, 속도가 높아질수록 다소 감소하였으나, 그 폭이 크지 않았다. 반면, $Ni-TiO_2$ 복합체의 경우에는 교반 속도가 높아지면, 전류효율이 급격히 감소하였다. 특히, 공기교반의 경우에는 1.0L/min에서 1.5L/min으로 교반속도가 증가하면 전류효율이 크게 감소하였다.

  • PDF

기계적 교반이 팽화슬러지 부상에 미치는 영향

  • Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.317-320
    • /
    • 2006
  • 20500 rpm에서 10분 교반까지 계면높이는 감소하였으나 10분 이상의 시간에서는 계면 높이가 증가하는 경향을 나타내었으며, 슬러지 농도도 10분까지 경향을 농축농도가 증가하지만 그 이상의 교반시간에서는 농도가 서서히 감소되는 경향을 나타내었다. Homogenizer의 교반에 의한 최적조건에서의 부상효율은 약 10%의 효과가 있는 것으로 나타났다. Image analyser로 교반하지 않은 경우와 교반한 경우 슬러지의 sauter mean diameter를 측정한 결과 각각 631 $\mu$m와 427 $\mu$m로 나타나 슬러지 플록의 입경이 줄어든 것으로 나타났다. 슬러지의 함수율은 10분의 교반시간까지 조금 감소하였으나 10분 이상의 교반시간에서는 슬러지 함수율이 증가하여 60분에는 99.1%까지 증가하였다.

  • PDF

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations (이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

Improvement of Cooling Water Quality by Coagulation and Sedimentation (응집침전에 의한 냉각수질 향상)

  • Woo, Dal-Sik;Jo, Kwan-Hyung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.369-371
    • /
    • 2008
  • 본 논문은 철강공장의 냉각수 처리 시스템에서 고로 집진수를 대상으로 한 응집교반실험을 실시한 결과, 주기적인 관 갱생작업(산세척)과 분산제의 주입이 필요하며, 음이온 고분자응집제에 양이온 고분자응집제를 첨가하여 사용할 경우에 탁도 제거측면에서 우수하였다. 급속교반 후 완속교반을 적용할 경우 급속교반 후 침전보다 탁도 제어 효과가 더 우수한 것으로 관찰되었으므로, 침전지의 처리효율을 증가시키기 위해서는 급속교반과 완속교반이 동시에 필요하였다.

  • PDF

Effect of Mechanical Mixing Intenstiy on Composting (교반강도가 퇴비화에 미치는 영향)

  • Hwang, Seon-Suk;Hwang, Eui-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.47-57
    • /
    • 1995
  • The purpose of this study was to investigate the effect of mechanical mixing intensity on composting. The major parameters investigated were the mixing intensity and initial moisture content. Laboratory scale composting reactors with mixing equipment were used in this study. Wastes used for the study were raw nightsoil sludge, nightsoil sludge after vacuum evaporation treatment and pig manure. When moisture contents were 60% and 63%, amount of organic material degraded in the continuous mixing reactors was higher than that in the intermittent mixing reactors. Compost produced from reactors with continuous mixing had better texture than that obtained from reactors with intermittent mixing. When moisture content was 68%, organic waste was kneaded rather than mixed in the continuous mixing reactors. Amount of organic material degraded in the continuous mixing reactors also was lower than that in the intermittent mixing reactors.

  • PDF

Experimental Consideration for Vibration Noise, Heat Evaluation on High Speed Mixer (고속 교반기의 진동소음, 열특성 평가를 위한 실험적 고찰)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1529-1534
    • /
    • 2008
  • Recently, mixers are being widely used in the display and semiconductor company in order to mix the chemical materials. The mixer normally consists of shaft, hub, reduction gear, and driving motor. It is one of the key design factors to evaluate the dynamic characteristics caused by the rotation. In this study, the dynamic characteristics of the high speed mixer, such as vibration, noise and thermal radiation, are verified by the experiment. Through the experiment, it is shown that the structural unbalance mass of high speed mixer is the important source of the severe vibrations and maximum temperature is mixer bowl.

Mixing Effects of Anaerobic Digestion Efficiency on Livestock Wastewater Treatment (교반이 축산폐수의 혐기성 처리효율에 미치는 영향)

  • Lee, Jong-Ho;Sung, Il-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.585-592
    • /
    • 2014
  • Mixing effect on anaerobic digestion of livestock wastewater was different results depending on the researchers have been reported. The purpose of this study was to understand application of Korea livestock waste it was necessary to determine the effect of mixing. 4 anaerobic reactors were operated mesophilic and thermophilic temperature with continuous mixing or non mixing condition, respectively. Experimental result showed If temperature was same, TCOD removal efficiency of continuous mixing reactor was 0.11-0.58% higher than non mixing reactor. Different mesophilic and thermophilic temperature, there was no significant difference of TCOD removal efficiency. Continuously mixed digester gas production was 1.7-4.6% higher than non mixed digester. In addition, mesophilic digester gas production was 29.1-32.1% higher than the thermophilic digester. It was due to the thermophilic digester believe the inhibition of ammonia. This study suggest that the optimized operation condition of anaerobic digestion for livestock wastewater treatment was mesophilic continuous mixing state.

Suggestion of the Analysis Model and Verification on Rotating Flow in Stirred Tanks Using CFD (전산유체역학을 이용한 교반 탱크 내에서의 회전유동에 대한 해석 모델의 제안 및 검증)

  • Hwang, Seung Sik;Yong, Cho Hwan;Choi, Gyuhong;Shin, Dohghoon;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.22 no.1
    • /
    • pp.28-37
    • /
    • 2013
  • Stirred tank is widely used in various industries for mixing operations and chemical reactions for single- or multi-phase fluid systems. For designing agitator of high performance, quantity data of internal flow characteristics influenced by mixing performance are definitely confirmed but quantity analysis about the transient flow characteristics of complicate structure is recognized as difficult problem in the present. In this study, two models of commercial CFD code Fluent 6.3 used to propose suitable for the tank analysis. Agitation of Stirred tank is analyzed using a mixed model and the flow in the stirred tank is analyzed using a standard k-${\varepsilon}$ model. Multiple reference frame(MRF) and Sliding mesh(SM), the analysis techniques were used For compare a result of CFD with a visualization experiment result, to grasp internal flow and mixing characteristic in stirred tank and to present fundamental analysis method.

Oxygen Transfer Rate from Liquid Free Surface in Reciprocally Shaking Vessel (왕복요동 교반조의 자유 표면에서의 산소흡수속도)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.276-280
    • /
    • 2021
  • The oxygen transfer rate at the liquid surface of the reciprocally shaking vessel was studied. The required power of the reciprocally shaking vessel was not proportional to the shaking frequency, unlike the rotational shaking vessel, and the liquid level suddenly fluctuated greatly at a certain frequency as the flow pattern in the vessel was a left and right wave flow different from that of the rotational shaking that has a rotational flow. The effect of the shaking frequency on the required power in the reciprocally shaking vessel was very complex, such as less power required than the rotational shaking vessel when the shaking frequency is more than 3 s-1, but the required power for the range of the generated rotational flow in the reciprocally shaking vessel could be correlated with the equation that was reported for the rotational shaking vessel. The kLa (mass transfer capacity coefficient) in the reciprocally shaking vessel also increased in a complex pattern because the required power for shaking was not consumed in a simple pattern, unlike kLa in the rotational shaking vessel, which increases linearly with increasing frequency. The kLa of the reciprocally shaking vessel was larger than the kLa of the rotational shaking vessel, and as the kLa value increased, the difference between them increased sharply. As a result, the oxygen transfer rate in the reciprocal motion was greater than that of the rotational motion, and could be correlated with the required power per unit volume.