• Title/Summary/Keyword: 교량 진동

Search Result 411, Processing Time 0.024 seconds

Real-time Vibration Control of Bridges by MR damper and Lyapunov Control Algorithm (MR댐퍼 및 Lyapunov제어알고리즘을 이용한 교량 구조물의 실시간 진동제어)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong;Park, Seung-Bum;Oh, Sung-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.55-61
    • /
    • 2010
  • This paper is concerned with an experimental research to random vibration control caused by external loads specially in bridges which tend to be structurally flexible. Experimenting on a reduced structure modelled on Seohae Grand Bridge, we inflicted a reduced form of El-centro wave on the model structure to a proper proportion. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and Lyapunov stability theory. Its control performance was evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, case of Lyapunov control method turned out to be the most effective to reduces of displacement and acceleration. Also, this method could to decrease consuming of external power for vibration control. Finally, it was noteworthy that Lyapunov control method was specially effective in the vibration control employing a semi-active damper such MR damper.

Free-vibration Characteristics of Two-I-girder Steel Bridges Curved in Plan (소수주형 수평곡선 강교량 상부구조의 자유진동 특성 분석)

  • Lee, Kee Sei;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.5
    • /
    • pp.365-371
    • /
    • 2016
  • In the case of the superstructure which is consist of two I girders and slab, the section can behave as II section, so that the neutral axis with respect to out of plane direction flexure can be regarded as major axis. Therefore in-plane flexural mode might govern the free vibration mode. Meanwhile, horizontally curved girders always experience not only bending moments but also torsional moments although the primary load is usually supposed to be gravitational load. The interaction due to bending and torsional moments make the behavior complicated and torsional mode may govern the free vibration mode. In other words, structure can have different dynamic characteristic due to its initial curvature. In this research, using 3-dimensional sell elements, free-vibration analyses are carried out due to initial curvature. The analysis models are assumed to be composite and non-composite and finally natural frequency and eigen mode are discussed.

Development of IoT-Based Disaster Information Providing Smart Platform for Traffic Safety of Sea-Crossing Bridges (해상교량 통행안전을 위한 IoT 기반 재난 정보 제공 스마트 플랫폼 개발)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2023
  • Jeollanam-do has 25 land-to-island and island-to-island bridges, the largest number in Korea. It is a local government rich in specialized marine and tourism resources centered on the archipelago and the sea bridges connecting them. However, in the case of sea-crossing bridges, when strong winds or typhoons occur, there is an issue that increases anxiety among users and local residents due to excessive vibration of the bridge, apart from structural safety of the bridge. In fact, in the case of Cheonsa Bridge in Shinan-gun, which was recently opened in 2019, vehicle traffic restrictions due to strong winds and excessive vibrations frequently occurred, resulting in complaints from local residents and drivers due to increased anxiety. Therefore, based on the data measured using IoT measurement technology, it is possible to relieve local residents' anxiety about the safety management of marine bridges by providing quantitative and accurate bridge vibration levels related to traffic and wind conditions of bridges in real time to local residents. This study uses the existing measurement system and IoT sensor to constantly observe the wind speed and vibration of the marine bridge, and transmits it to local residents and managers to relieve anxiety about the safety and traffic of the sea-crossing bridge, and strong winds and to develop technologies capable of preemptively responding to large-scale disasters.

Simple Method of Vibration Analysis of Three Span Continuous Reinforced Concrete Bridge with Elastic Intermediate Support (탄성지지된 3경간 철근콘크리트 교량의 간단한 진동해석법)

  • Kim, Duk-Hyun;Han, Bong-Koo
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.23-28
    • /
    • 2004
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the three span continuous reinforced concrete bridge with elastic intermediate supports is presented. Such bridge represents either concrete or sandwich type three span bridge on polymeric supports for passive control or on actuators for active control. The concrete slab is considered as a special orthotropic plate. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper, The influence of the modulus of the foundation and $D_{22}$, $D_{12}$, $D_{66}$ stiffnesses on the natural frequency is thoroughly studied.

Vibration Analysis of an Elevated Railroad Station Considering Station-Bridge Connection Characteristics (교량 접속부 특성을 고려한 선하역사의 진동 해석)

  • Choi, Sanghyun;Kwon, Soonjung
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.2
    • /
    • pp.274-281
    • /
    • 2014
  • Since the vibration induced by a train is transferred directly to a station via a roadbed structure, the elevated station is particularly vulnerable to noise and vibration. To establish more appropriate measures to reduce vibration, the structural behavior and damping characteristics depending on the structural type and the composition of a elevated station should be identified, because the noise inside the station is mainly structure borne noise by the vibration of a station structure. In this paper, the vibration characteristic changes depending on mechanical connection types between an elevated station and a connected bridge are analyzed. The finite element model for Daecheon Station is constructed for the purpose of this study, and the analysis is performed using ABAQUS. The analyses are conducted for with and without bridge connections, and for the bridge connections, ramen and bearing types are considered in the analysis.

Research on Vibration and Noise Characteristics of Steel Plate Girder Bridge with Embedded Rail Track System (레일매립궤도 시스템이 적용된 판형교의 진동 및 소음특성에 대한 연구)

  • Park, Jeung-Geun;Koh, Hyo-In;Kang, Yun-Suk;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Most of the existing rail structures have undergone a lot of aging since a considerable period of time has passed from completion. In particular, among existing railway bridges, many of the plate girder bridges are older bridges that have lived 40 to 60 years or more. Since the treadmill is directly connected to the girder without the ballast, the running load of the vehicle is directly transmitted to the bridge. Therefore, the shock and noise applied to the bridge are larger than those of the ballast bridge, and the dynamic shock and vibration are also relatively large. Therefore, it is very urgent to develop appropriate maintenance, repair and reinforcement technology for existing steel plate bridge. In this study, the authors introduced the characteristics of embedded rail (ERS) developed for improving the performance of the existing plate girder bridge and the techniques solving the vibration and noise problems. In order to evaluate the vibration and noise reduction performance of ERS, a non-ballast plate girder bridge with 5m length of sleepers installed and a plate girder bridge with ERS were fabricated. And, then, the vibration response generated under the same excitation condition was measured and analyzed. Also, the radiated noise analysis was performed using the vibration response data obtained from the experiment as the input data of the acoustic analysis model. As a result of experiments and analyses, it was confirmed that the plate girder bridge's vibration using ERS was reduced by 15.0~18.8dB and the average noise was reduced by 7.7dB(A) more than the non-ballast bridge.

A Study on the Fatigue Behavior of RC Slabs of Widened Bridges (확폭교량 RC 상판의 피로거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.143-150
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existmg bridges structurally a single structure. Since the joining-constructiori method has several problems in design and construction viewpoint, this study is conducted in order to investigate the flexural fatigue behavior of RC slabs, which are widened and influenced by traffic-induced vibration of existmg bridge during placing and curing of new concrete, with the prototype fatigue test. It was found that stress concentration at the jclmts anti slips between steel bar and concrete are occured. Hut, the general tx:havinrs are similar to the original state and joining-construction method using expansive concrete nut~gated the influence of the trafflc-induced vibration.

Dynamic Analysis of Steel Box Girder Bridge installed with Skid Proof Pavement (미끄럼방지포장을 설치한 강상자형 교량의 동적해석)

  • Park, Pyoung Deuk;Chung, Jae Hoon;Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.329-337
    • /
    • 2002
  • The skid proof pavement is used for safety driving on curved bridges and high level roads. This study analyzed the effect of skid proof pavement on the bridge using actual spot test and computer analysis. In the actual spot test, the natural frequency and dynamic deflection of steel box girder bridges were measured before and after skid proof pavement. Likewise, in the computer analysis, the dynamic response of the finite element model was evaluated. The model was based on real steel box girder bridge according to the skid proof pavement. The analyzed results provide basic data on the effect of skid proof pavement on road structure.

A Study on the Flexural Behaviors of RC Slabs of Widened Bridges (확폭교량 RC 상판의 휨거동에 관한 연구)

  • 홍순길;장동일
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.152-161
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existing bridges structurally a single structure. Since the joining-construction method has several problems in design and construction viewpoint, this study is conducted in order to investigate the structural behaviors of RC slabs, which are widened and influenced by traffic-induced vibration of existing bridge during placing and curing of new concrete, with the prototype flexural strength test and FEM analysis. It was found that cracks are generated in construction joint at low applied load and that stress concentration at the joints and slips between steel bar and concrete are occured. But, the decreasing of load carrying capacity is negligible according to the traffic-induced vibration as well as the difference of construction method.

Estimation of Dynamic Displacements of a Bridge using FBG Sensors (FBG센서를 이용한 교량의 동적변위 추정)

  • Shin, Soobong;Yun, Byeong-Goo;Kim, Jae-Cheon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.101-109
    • /
    • 2009
  • An algorithm is proposed for estimating dynamic displacements of a bridge by using FBG sensors and by superposing some measurable low modes. Modal displacements are obtained from the beam theory and the generalized coordinates are deduced from the strains measured by FBG sensors. By considering flexural and torsional modes occurred in bridges only as flexural modes of a simply supported beam by separating a bridge into multiple girders or parts, the proposed algorithm can be applied to various types of bridges. Guidelines are provided theoretically for determining the number of modes and the number of strain gages to be used. The proposed algorithm has been examined through simulation studies on various types of bridges, laboratory experiments on a model bridge, and field tests on a simple span PC Box girder bridge. Through the simulation study, the effects of the error in the vibration modes and measurement noise on estimating the dynamic displacements are analyzed.