• Title/Summary/Keyword: 교량 관리 시스템

Search Result 280, Processing Time 0.029 seconds

Study for Determination of Management Thresholds of Bridge Structural Health Monitoring System based on Probabilistic Method (확률론적 방법에 의한 교량계측시스템의 관리기준치 설정에 관한 연구)

  • Kim, Haeng-Bae;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • Recently, structural health monitoring system(SHMS) has been appled cable bridges as the effective maintenance tool and the management threshold is considered to assess the status of the bridge in SHMS. The threshold is generally determined by the allowable limit based on design specification because there is no method and standard for threshold calculation. In case of the conventional thresholds, it is difficult to recognize the event, abnormal behavior and gradual damage within the threshold. Therefore, this study reviewed the problem of previous methods and proposed the advanced methodologies based on probabilistic approach for threshold calculation which can be applied to practice work. Gumbel distribution is adopted in order to calculate the threshold for caution and warning states considering the expectations for return periods of 50 and 100 years. The thresholds were individually determined for measurement data and data variation to detect the various abnormal behaviors within allowable range. Finally, it has confirmed that the thresholds by the proposed method is detectable the abnormal behavior of real-time measuring data from SHMS.

Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges (신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정)

  • Cho, Hyo-Nam;Kang, Kyung-Koo;Cha, Cheol-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.129-138
    • /
    • 2005
  • This paper presents a methodology for the determination of optimal managing criteria for cable tension force in cable-stayed bridges using acceleration data acquired by monitoring system. There are many long span bridges installed with monitoring system in Korea. The monitoring systems are installed to diagnose abnormal behavior or damages in bridges and to warn these to bridge management agency. In cable-stayed bridges, the cable tension force could be an important indicator of abnormal behavior because of the geometric configuration of the cable-stayed bridge. If the management value of cable tension force is set too high or too low, then the monitoring system could not warn properly for the abnormal behavior of a bridge. Generally, the management value is set by empirical or engineering judgment, but in this paper, a new methodology for the determination of managing criteria for cable tension force is proposed based on the probability distribution model for tension force and reliability analysis. The proposed methodology is applied to a real concrete cable-stayed bridge in order to investigate its applicability.

An Experimental Study on Development Connection System of Concrete Barrier in Modular Bridges (조립식교량의 콘크리트 방호울타리 연결시스템 개발을 위한 실험적 연구)

  • Jung, Ho Sung;Lee, Sang Seung;Choi, Jin Woong;Kim, Tae Wan;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Recently, in field of bridge construction, modular technology has been studied to reduce construction period. However, main stream of the study is limited to the pier, girder and deck of bridge, which are huge or main members. Studies on incidental facilities like concrete barrier is out of sight. Thus, in this study, connection system of concrete barrier was developed to apply to modular bridges and static experiment was performed in order to verify structural capability of proposed system. Variables of experiment are composed of bolt direction such as vertical and horizontal. The experimentation due to the designed variables was conducted by comparison with a standard concrete barrier, which is a traditional barrier. As a result, vertical joint way of the bolt showed nearly identical structural performance and healthy to standard specimen's. it can be applied to modular bridges.

The Real-time Health Monitoring System of a Cable-stayed Bridge Based on Non-destruction Measurement (비파괴계측에 의한 사장교의 공용간 상시안전감시시스템)

  • Choi, Man-Yong;Kang, Kyung-Koo;Kim, Jong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • Many civil and infrastructures continue to be used despite aging and the associated potential for damage accumulation. Therefore, the ability to monitor the health of these systems is becoming increasingly important. The purpose of this paper is to propose a real-time health monitoring system of cable-stayed bridge, based-on non-destructive measurement. And also this paper focuses on the safety assessment for bridge from health monitoring system to accomplish this safety assesment. Using the proposed health monitoring system, it helps bridge maintenance and reduces the economic cost of a life-cycle costs. Also it give important data to develop the design and analysis method for cable-stayed bridges.

The Model to Generate Optimum Maintenance Scenario for Steel Bridges considering Life-Cycle Cost and Performance (강교량의 최적 유지관리 시나리오 선정 모델)

  • Park, Kyung Hoon;Lee, Sang Yoon;Kim, Jung Ho;Cho, Hyo Nam;Kong, Jung Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.677-686
    • /
    • 2006
  • In this paper, a more practical and realistic method is proposed to establish the lifetime optimum maintenance strategies of the deteriorating bridges considering the life-cycle performance as well as life-cycle cost. The genetic algorithm is applied to generate the set of maintenance scenarios that is the multi-objective combinatorial optimization problem related to lifetime performance and cost as separate objective functions, and the technique to select optimum tradeoff maintenance scenario is presented. Optimum maintenance scenarios could be generated not only at the individual member level but also at the system level of the bridge. Through the analytical results of applying the proposed methodology to the existing bridge, it is expected that the methodology will be effectively used to determine the optimum maintenance strategy for introducing a real preventive maintenance system and overcoming the limits of existing maintenance methods.

Analysis of New Health Monitoring System for Long Span Bridge over the Sea (해상 장대교량의 시공중 계측 및 유지관리 시스템 구축을 위한 분석 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.142-147
    • /
    • 2008
  • The cases of using new methods of big blocks are largely increasing on Recent large-scale bridge structures. So the accurate data of responses of bridges following environmental causes are required to be quickly recorded in order to predict. For this reason described above, the research on measuring system should be conducted for more knowledge of the details on application and stability of new methods. In this study, the new health monitoring system that can monitor the real behavior and damages of the bridge during all processes of construction is presented by analyzing cases of domestic and overseas bridge health monitoring system, and applied methods of following bridges.

Cost Analysis of Monitoring System with Optic Fiber Sensors (광섬유센서를 이용한 모니터링 시스템의 비용 분석)

  • You, Young-Jun;Park, Ki-Tae;Joo, Bong-Chul;Lee, Chin-Hyung
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.67-73
    • /
    • 2009
  • Civil infrastructure is the basis facility which builds up the base of national economy operation. Consequently unexpected sudden abnormal condition of civil infrastructure causes private and national property loss and moreover can spread social issue. Therefore, continuous maintenance and safety management for the civil infrastructures should be handled with great weight. Monitoring system for managing bridge maintenance was introduced first in the early of 1990s and has been developed up to real time measurement and analysis. Thesedays another system using fiber optic sensors is being developed. This paper presents the cost analysis of bridge monitoring system with fiber optic sensors which is gathering attention. Various cases were considered and the results were compared with that of monitoring system with electronic resistant type sensors widely used. As a results, fiber optic sensor system has good advantages in various cases, and a1so cost effectiveness compared to conventional sensor system.

  • PDF

A Study on Development of BIM-based Asset Management Model for Maintenance of the Bridge (교량의 유지관리를 위한 BIM기반 자산관리 모델 개발에 관한 연구)

  • Kang, Jong-Min;Lee, Dong-Youl;Park, Jong-Bum;Lee, Min-Jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.3-11
    • /
    • 2012
  • The most of domestic bridge has an used life under 30 years, Future maintenance budgets can be expected to increase. However, because of bridge maintenance budgets are limited, demand for asset management being performed to achieve required performance within available budget is increasing. To perform effective asset management of bridges should be made the best use of information to occur in all phase of construction project. Therefore, the development of system and DB is required to support asset management by effective information management. The objective of this study is the development of the BIM-based bridge asset management model. Through previous research survey, BIM capabilities and asset management components were established and mutual linkages were examined. Bridge asset management model was composed of alternate assessment model. In addition, BIM-based asset management model was performed case studies to verify feasibility and applicability. The proposed model can be applied to a current bridge maintenance procedures and supported to perform effective bridge maintenance tasks within a limited budget.

A study on Risk-based Bridge Performance Evaluation Method for Asset Management (위험도 개념을 적용한 교량 자산관리의 성능평가방법 연구)

  • Choi, Hyun-Ho;Sun, Jong-Wan;Park, Kyung-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.22-32
    • /
    • 2013
  • Generally, asset management procedure consists of exact information collection, decision of service level, analysis of aspiration level, analysis of financial condition and available budget, preparation of asset management plan, and value of modified asset. In this study, for the risk-based asset management, condition assessment and performance measuring, assessment of failure modes and risks, evaluation/selection of treatment options, and implementation of optimum solution are additionally included. For this, bridge inventory and performance measure considering risks are classified and method of quantitative/qualitative performance measure is suggested. Also, evaluation method of risk analysis for bridge asset management is suggested and basic research is carried out for applicable method of risk-based asset management. Using suggested risk procedure and method of risk-based bridge service level evaluation, it is possible to perform resonable asset management. Moreover, it is concluded that the proposed applicable method of risk-based asset management will provide a solution to contribute the development of systematical asset management for optimal decision making and prototype asset management system.