• Title/Summary/Keyword: 교량상태평가

Search Result 210, Processing Time 0.028 seconds

Effect of Velocity-Pulse-Like Ground Motions on Seismic Fragility of Bridges (교량의 지진취약도에 대한 속도 펄스를 가진 지반운동의 영향)

  • Yeeun Kim;Sina Kong;Sinith Kung;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Pulse-like ground motion can cause greater damage to structures than nonpulse-like ground motion. Currently, much research is being conducted to determine the presence or absence of velocity pulses and to quantify them from seismic-acceleration records. Existing ground motion is divided into far-field (FF) and near-fault ground motion, based on the distance of the measurement point from the fault. Near-fault ground motion is further classified into near-fault pulse-like (NFP) and near-fault nonpulse-like (NFNP) ground motion by quantifying the presence or absence of velocity pulses. For each ground motion group, 40 FF, 40 NFP, and 40 NFNP ground motions are selected; thus, 120 ground motions are used in the seismic analysis to assess the seismic fragility of sample bridges. Probabilistic seismic demand models (PSDMs) are created by evaluating the seismic responses of two types of sample bridges with lead-rubber and elastomeric rubber bearings using three groups of ground motions. Seismic fragility analysis is performed using the PSDM, and from these results, the effect of the presence or absence of seismic velocity pulses on the seismic fragility is evaluated. From the comparison results of the seismic fragility curve, the seismic fragility of NFP ground motion appears to be approximately three to five times greater than that of NFNP ground motion, according to the presence or absence of a velocity pulse of seismic waves. This means that the damage to the bridge is greater in the case of NFP ground motion than that in the case of NFNP ground motion.

Evaluation on Bearing Capacity of End Girder Member with Local Corrosion (지점부 부재의 부식손상에 따른 강거더 단부 지압강도 평가)

  • Ahn, Jin Hee;Lee, Won Hong;Kim, In Tae;Jeong, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.74-82
    • /
    • 2017
  • Localized corrosions damages in their structural sections can be occurred affected by installed environment conditions with high temperature as near the coastline and humidity or their poor maintenance situation. In bearing supports of steel bridges, especially, lower web and vertical stiffener in end girder support can be easily corroded because of relatively higher humidity due to the narrow space in the end of girder and the wetted accumulated sediments affected by rain water or antifreezing admixture leaked from expansion joint. It can be related to change in their structural performance. In this study, thus, bearing strength test specimens were fabricated considering corrosion damage in the web and vertical stiffeners and the change in their bearing strengths were experimentally evaluated. From the test results, localized corrosion damage of structural members in the end girder affected the bearing strength of end girder support, especially, localized corrosion damage of the vertical stiffener relatively highly affected their bearing strengths.

Evaluation of Tension of Stay Cable using MBM (Measurement-based Model) (계측기반모델에 의한 사장케이블의 장력 평가)

  • Nam, Sang-Jin;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • This study presents the recomposition of MBM (measurement-based model) using natural frequencies and modes from the usually measured data, and the evaluation of cable tension in service from the analysis results upon MBM of existing CSB (cable stayed bridge). The cable tension is shown to be different according to the position attached to cable and loading type. The measured cable tensions are not different distinctly according to position attached cable under dead and live loads, but larger than those under design loads. The distribution of cable tension calculated upon the MBM is similar to those of measured tension although the former is more than those of cable tension upon the design model. Considering to long-term behaviors of cable, therefore, the design of cable in CSB needs to apply the analysis results on MBM. For this purpose, future study needs lots of measured data and MBM is used to analyze the long-term behavior of cable in CSB.

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges (공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안)

  • Oh, Hong-Seob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.

An Experiment on Redundancy in Simple Span Two-Girder Bridge - Effects of Lateral Bracing (단경간 2-거더교의 여유도 평가 실험-수평브레이싱의 효과)

  • Park, Yong Myung;Joe, Woon Do Ji;Hwang, Min Oh;Lee, Dae Yong;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.271-280
    • /
    • 2007
  • This paper presents the results of an experimental study to evaluate the redundancy in two plate-girder bridges, which are generally classified as non-redundant load path structures. The study was performed at a time when one of the two girders was damaged. The bottom lateral bracing was considered the experimental variable, and two 1/5-scale bridge specimens of simple span with and without a lateral bracing system were fabricated. Loading tests were first performed on the intact specimens without a cracked girder, within an elastic range. Thereafter, the ultimate loading tests were conducted on the damaged specimens with an induced crack at the center of a girder. The test results showed that the cross beams and the concrete deck redistributed some of the load to the uncracked girder, but the lateral bracing system played an important role in improving the redundancy during the damage and was also effective for load redistribution even when the bridge was intact.

Seismic Fragility Analysis of Curved Beam with I-Shape Section (I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

Condition Estimation of Facility Elements Using XGBoost (XGBoost를 활용한 시설물의 부재 상태 예측)

  • Chang, Taeyeon;Yoon, Sihoo;Chi, Seokho;Im, Seokbeen
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • To reduce facility management costs and safety concerns due to aging of facilities, it is important to estimate the future facilities' condition based on facility management data and utilize predictive information for management decision making. To this end, this study proposed a methodology to estimate facility elements' condition using XGBoost. To validate the proposed methodology, this study constructed sample data for road bridges and developed a model to estimate condition grades of major elements expected in the next inspection. As a result, the developed model showed satisfactory performance in estimating the condition grades of deck, girder, and abutment/pier (average F1 score 0.869). In addition, a testbed was established that provides data management function and element condition estimation function to demonstrate the practical applicability of the proposed methodology. It was confirmed that the facility management data and predictive information in this study could help managers in making facility management decisions.

전류인가형 부식 장치 개발

  • 임승수;김경진;정재필
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.22-22
    • /
    • 2002
  • 본 연구에서는 교량, 발전소, 산엽체의 시설물 둥 대형 옥외 설치 구조물의 부식방지를 위해, 전류 인가형 부식 방지 장치를 개발하였다. 기존의 전극기판(anode base)은 pve로 만들 어져 있어서, 옥외에 설치된 상태에서 쉽게 열화되어 부스러지며, 비 갠 후 시설물의 일부에 물기가 남아 있는 부식 환경하에서도 플라스틱 기판은 물기가 쉽게 제거되어 이마 건조된 상태가 된다. 이 경우에는 기판을 통해 부식방지 전류를 흐르게 할 수가 없기 때문에 희생 양극의 임무를 수행할 수가 없으며, 시설물이 부식되는 단점이 있다. 본 연구에서 개발한 흡습성 기판은 기존의 pve 기판의 단점을 개선한 것으로, 대기 중에 방치해도 수명이 영구적이며, 다공질이기 때문에 흡습성이 있어서 비 캔 후에도 기판 내부와 표면에 물기가 남아 었다. 따라서, 비 캔 후 부식환경에서도 부식 방지 전류를 흐르게 할 수가 있어서 희생양극의 업무를 수행할 수 있다. 본 연구에서는 옥외 구조물에 대한 방식 특성을 평가하기 위하여, 세라믹 기판을 부착하고 전류 측정을 하기 위한 철판(보통탄소강)구조물을 아래와 같이 제작하였다. 구조물의 $가로{\times}세로$ 크기는 $450mm{\times}450mm$ 이며, 구조물의 중앙에 세라믹 또는 pve Anode 기판을 부착 하였다. 살수 후 전류의 측정 위치는 구조물의 Anode 기판 중심에서 100mm 떨어진 지점 4 곳에 부착하였다. 본 연구에서 개발한 세라믹 가판의 경우와 기존의 pve 기판의 경우를 비 교 실험한 결과, 전자의 경우는 120분 경과 후에도 $70~80\mu\textrm{A}$의 많은 양의 전류가 흐르는 것으로 밝혀졌으며, 후자의 경우는 120분이 지난 후에는 전류가 전혀 흐르지 않는 것올 알 수 있다. 따라서, 기존의 pve 보다 세라믹 기판의 경우가 수분 흡수율이 높아 더 오랫동안 전류를 흐르게 하여 방식성이 개선된 것으로 판단된다.

  • PDF

Evaluation of the Status of Ballast on the Bridge Expansion f)int using HWAW method (HWAW방법을 이용한 고속철도 교량 상판 신축 이음부 도상 자갈의 이완상태 및 이완범위 평가)

  • Park, Hyung-Choon;Park, Jun-O;Jin, Nam-Hee;Noh, Hee-Kwan;Bae, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.997-1002
    • /
    • 2009
  • The local loosening of ballast supporting railway tract cause a differential vertical tract settlement. In the bridge, the temperature change make bridge deck to contract and expand, and this movement cause local loosening of ballast on the bridge expansion joint. Therefore, the evaluation of the status of ballast on the bridge expansion joint is important for the track maintenance of the high-speed railway. In this paper, hwaw method was applied to evaluate the status of ballast on the bridge expansion joint. HWAW method is non-destructive test to evaluate 2-D shear wave velocity map along the railway. Shear wave velocity is directly related with status of ballast. In this research, hwaw method was applied two different types of bridges and determine the degree and the range of the ballast loosening caused by movement of the bridge expansion joint.

  • PDF

Condition Evaluation of Concrete Bridge Decks using CPR (레이더를 이용한 콘크리트 교량의 바닥판 상태평가)

  • Suh, Jin-Won;Rhee, Ji-Young;Lee, Il-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.101-107
    • /
    • 2000
  • In this study, the Ground Penetrating Radar(GPR) was tested to evaluate the condition of concrete decks. Test results obtained by CPR were compared with values measured from drilled cores and damage mapping by the visual survey. It is shown that GPR can provide highly accurate measurements of layer properties of concrete decks and can map areas of deterioration in bridge decks by dielectric constants. The deck condition can be grouped into categories of "good" or "distressed". The ground penetrating radar data shows promise for producing rapid and accurate condition assessment for bridge decks. And these data can be used to evaluate highway bridge condition and make cost-effective bridge deck rehabilitation by accurately estimating the quantity of deteriorated concrete.

  • PDF