• Title/Summary/Keyword: 교량구조물

Search Result 798, Processing Time 0.027 seconds

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

A Numerical Analysis on the Diaphragm Structures for Improving Fatigue Performance in Orthotropic Steel Decks (강바닥판의 피로성능 향상을 위한 다이아프램 구조상세)

  • Shin, Jae Choul;An, Zu Og;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.559-573
    • /
    • 2007
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration because of out of plane and oil-canning deformation caused by longitudinal rib distortion with shear force and distortion. At the current research, the crossing point where the orthotropic steel decks's effect of improving fatigue performance are high, not placing scallop and diaphragm which have same plane with transverse rib placed inside of longitudinal rib at the same time, the reduce effects of stress concentration at the cut-out section and the crossing are high. Especially the installation of the diaphragm causing great effects based on research results to stress concentration appearance reduce effects at the cut-out section, putting radius of curvature of the diaphragm's top and bottom as a target, as a result of carrying out the parametric analysis an optimal diaphragm form that has great effects in fatigue performance came to a conclusion. Also based on optimal diaphragm form, an advantage of the diaphragm optimal setting position for improvement of the fatigue performance came to a conclusion.

The Change of Stream Flow Characteristics after Removing Small Dam (보 철거 후 하도내 흐름특성 변화)

  • Lee, Bae-Sung;Jeong, So-Young;Jeong, Dong-Kug;Lee, Sang-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1686-1690
    • /
    • 2006
  • 현재 우리나라에서는 하천의 개수사업 및 교량, 제방 등과 같은 수공구조물 설계시 계획 홍수위를 산정하는데 있어 실무에서는 1차원 모형인 HEC-RAS 모형이 널리 이용되고 있다. 그러나 HEC-RAS 모형과 같은 1차원 모형의 경우 모형의 한계로 인해 하폭의 확대, 축소, 만곡부 및 섬 등과 같은 장애물 존재시 하천횡단면에 따른 수위 및 유속변화를 표현하는데 많은 어려움이 있으며, 이런 한계로 인해 1차원 모형만을 이용하여 하도 및 하천공간계획을 수립하기란 사실상 불가능하다. 또한 최근 들어 하천기능에 대한 인식이 과거 홍수소통, 용수이용 등 이.치수중심에서 인간과 다양한 생명체가 공존하는 서식처로서의 기능을 부여하는 생태하천의 개념으로 변화하는 추세이며, 이와 같이 변화된 패러다임하에서 생태하천복원사업 등과 같은 하천관련 사업추진 시 합리적인 하도 및 하천의 공간계획을 수립하기 위해서는 하도내 2차원 흐름특성 등과 같은 기초자료가 절실히 요구된다. 따라서, 본 연구에서는 합리적인 하도 및 하천의 공간계획을 수립하기 위한 기초자료를 제공함은 물론, 보 철거에 따른 하도내 흐름개선 효과를 분석하기 위해 연구대상 하천인 두계천에 대하여 2차원 수치모의를 통한 하도내 흐름특성 변화를 조사하였다. 본 연구에서 선정한 2차원 모형으로는 유한요소법에 기반을 둔 RMA-2모형의 범용프로그램인 SMS 모형을 선정하였고, 1차원 수치해석을 통하여 선정된 하류단의 경계조건을 적용하여 2차원 수리특성 분석을 실시하였다. 분석결과 철거대상 취수보 15개에 대하여 보철거 후 수위에 대한 개선 효과는 금암보를 제외한 대부분의 보 철거 구간에서는 그리 크지 않은 것으로 나타난 반면, 보 철거에 따른 유속의 개선효과는 대부분 큰 것으로 나타났다.는 경우보다 낮게 나타나고 있다. On-Line 저류지의 경우 Off-Line 의 경우에 비해 수위, 유량이 저류지의 상류단에서 크게 나타났다. On-Line 저류지의 경우 Off-Line 의 경우에 비해 같은 값의 첨두홍수량을 저류하기 위해서 상대적으로 넓은 저류면적이 필요한 것으로 나타난다. 대등한 수위감소값의 홍수저감효과를 발휘하기 위해서 본 연구에서는 On-Line 저류지 면적은 Off-Line 저류지에 비 두배 이상이 필요한 것으로 보여졌다.들에 관한 정보는 종종 현장관측에서 조차 무시되는 경우가 많다. 이에 본 연구에서는 수질모형의 매개변수 중 특히 수리특성에 관련된 매개변수들이 수질에 미치는 영향을 파악하는 것을 목적으로 하고 있다. 이를 위해 적용된 수질모형은 QualKo를 사용하였으며, 대상 하천은 낙동강 본류 경남구간 시점 부근인 회천 합류 전부터 낙동강 본류 경남구간 종점 부근인 밀양강 합류 전까지의 경남 오염총량관리 기본계획 시 구축된 모형 매개변수를 바탕으로 분석을 수행하였다. 일차오차분석을 이용하여 수리매개변수와 수질매개변수의 수질항목별 상대적 기여도를 파악해 본 결과, 수리매개변수는 DO, BOD, 유기질소, 유기인 모든 항목에 일정 정도의 상대적 기여도를 가지고 있는 것을 알 수 있었다. 이로부터 수질 모형의 적용 시 수리 매개변수 또한 수질 매개변수의 추정 시와 같이 보다 세심한 주의를 기울여 추정할 필요가 있을 것으로 판단된다.변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측

  • PDF

An Experimental Study on Properties of Concrete Using Latent Heat Binder (잠열성 결합재를 활용한 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Kim, Do-Su;Khil, Bae-Su;Kim, Ook-Jong;Lee, Do-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.661-668
    • /
    • 2008
  • It is necessary to develop a new technology for effectively reducing hydration heat and controlling thermal cracking caused increasing construction of large size massive concrete structures such as mat foundation of high-rise building, grandiose bridge, and LNG tank. Therefor, to develop a new technology for reducing hydration heat of large size massive concrete in this study, after developing the latent heat binder for controling hydration heat of concrete by application of latent heat material, it was investigated basic properties and durability such as slump, air content and compressive strength, shrinkage properties, permeability, freezing and thawing resistance, corrosion, and hydration heat generation properties of concrete using latent heat binder. As a test result, it was confirmed that latent heat binder was not affected adversely the basic property and durability of concrete, and was advanced on the reduction of hydration heat and control of thermal crack. It is expected to be applied as the excellent technology on the management of hydration heat and thermal crack in large size mass concrete structures.

Object-oriented Road Field BIM Standard Object Classification System Suggest Development Plan (객체지향의 도로분야 BIM 표준객체분류체계 개발방안)

  • Nam, Jeong-Yong;Kim, Min-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.119-129
    • /
    • 2018
  • The Ministry of Land, Transport and Maritime Affairs has promulgated the mandatory design of BIM for road projects of more than 50 billion won by 2020 under the Basic Plan for the Sixth Construction Technology Promotion. As a result, major public clients are attempting to implement BIMs that are appropriate to the situation of each institution. On the other hand, it is difficult to design and construct a proper BIM and accumulate BIM information of the ordering organization because the technical guidelines and standard classification system that can perform BIM effectively have not been presented sufficiently. The characteristics of the road should be managed systematically, e.g., atypical objects, such as earthworks, which are constantly changing along a line; large objects, such as bridges and tunnels; and facilities, such as signs and soundproof walls. To achieve this, a multitude of standard systems should be developed and disseminated, but there have been insufficient studies on practical methods. To solve this problem, this study developed a BIM standard object classification system in the road sector to meet the international standard, accommodate a multi-dimensional information system, and provide a more effective BIM standard information environment that can be utilized easily by practitioners.

The Comparison of Various Turbulence Models of the Flow around a Wall Mounted Square Cylinder (벽면에 부착된 사각 실린더 주변 유동에 대한 난류모델 비교연구)

  • Bae, Jun-Young;Song, Gi-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.419-428
    • /
    • 2020
  • The flow past a wall mounted square cylinder, a typical and basic shape of building, bridge or offshore structure, was simulated using URANS computation through adoption of three turbulence models, namely, the k-ε model, k-ω model, and the v2-f model. It is well known that this flow is naturally unstable due to the Karman vortex shedding and exhibits a complex flow structure in the wake region. The mean flow field including velocity profiles and the dominant frequency of flow oscillation that was from the simulations discussed earlier were compared with the experimental data observed by Wang et al. (2004; 2006). Based on these comparisons it was found that the v2-f model is most accurate for the URANS simulation; moreover, the k-ω model is also acceptable. However, the k-ε model was found to be unsuitable in this case. Therefore, v2-f model is proved to be an excellent choice for the analysis of flow with massive separation. Therefore, it is expected to be used in future by studies aiming to control the flow separation.

Analysis of Flood Inundation using GIS (GIS를 이용한 홍수범람 분석)

  • Shim, Soon-Bo;Kim, Joo-Hun;Lim, Gwang-Seop;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.132-142
    • /
    • 2003
  • A significant deficiency of most computer models used for stream floodplain analysis, is that the locations of structures impacted by flood waters, such as roads, buildings, and bridges, cannot be effectively compared to the floodplain location. The purpose of this study is the integration of the HEC River Analysis System(HEC-RAS) with ArcView geographic information system to develop a regional model for floodplain determination and representation. Also this study presents to enable two- and three-dimensional floodplain mapping and analysis in the ArcView. The methodology is applied to a Yeoju of Kyunggi-do, located in South Han River Basin. A digital terrain model is synthesized from HEC-RAS cross-sectional data and a digital elevation model of the study area. The flood plain data developed in ArcView was imported into HEC-RAS where it was combined with the field surveyed channel data in order to construct full floodplain cross sections that reflected accurate channel and overbank data for the HEC-RAS model. The flood plain limits could be expressed more accurately on ArcView by using water level data to be computed in HEC-RAS program. The computed water surface elevations and information of cross-section must be manually plotted in order to delineate floodplains. The resulting of this study provided a good representation of the general landscape and contained additional detail within the stream channel. Overall, the results of the study indicate that GIS combined with HEC-RAS is proven to be very useful and efficient for the automatic generation of flood maps, and an effective environment for floodplain mapping and analysis.

  • PDF

An Aesthetic Design Approach for the Landscape of Aqueduct Bridges (수로교 경관 개선을 위한 미학적 설계법)

  • Jeon, Geon Yeong;Kim, Namhee;Huh, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.355-367
    • /
    • 2012
  • Many of old aqueduct bridges located in rural areas are in need of repair and redesign. They still occupy some portion of countryside landscaping. However, most of them were designed to fulfill their basic functions of carrying waters, which has not contributed to the landscape positively. Moreover, it is not rational to treat each design case of aqueduct bridges individually because they are relatively small in size and arranged continuously over a long path. Therefore, it is better to provide a design guideline to repair or to redesign old aqueduct bridges as a whole considering both structural safety and landscape. The main objective is to develop a framework to repair and redesign of old aqueduct bridges for safety improvement and better landscape. Specifically this paper will address the development of possible design alternatives for repair and redesign The development of design alternatives for redesign will follow general principle of bridge aesthetics and be represented according to structural system, flume shape, pier height, pier shape in terms of design parameters while minor repair includes paintings and other ornamentations. And the developed design alternatives will be reviewed with its landscape as a background to check the visual compatibility within the community context. It is expected that the proposed guideline will be utilized to develop a maintenance plan to revitalize old aqueduct bridges to improve overall landscape of rural areas.

A Study on Blasting Method for the Smallest of the Scour Depth after Pier Construction (교각의 세굴심도 최소화를 위한 발파공법 연구)

  • 김가현;김종주;안명석
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.23-35
    • /
    • 2003
  • An analytical diffusion model for flood routing with backwater effects and lateral flows is developed. The basic diffusion equation is linearized about an average depth of (H + h), and is solved using the boundary conditons which take into account the effects of backwater and lateral flows. Scouring phenomenon around pier which affects on the support function of pier and the stabilization if river bed is a complex problem depending on flow properties and river bed state as well as pier geometry. therefore, there is no uniting theory at present which would enable the designer to estimate, with confidence, the depth of scour at bridge piers. The various methods used in erosion control are collectively called upstream engineering, HEC-RAS Model, underwater blasting. They consist of reforestation, check-dam construction, planting of burned-over areas, contour plowing and regulation of crop and grazing practices. Also included are measures for proper treatment of high embankments and cuts and stabilization of streambanks by planting or by revetment construction. One phase of reforestation that may be applied near a reservoir is planting of vegetation screens. Such screens, planted on the flats adjacent to the normal stream channel at the head of a reservoir, reduce the velocity of silt-laden storm inflows that inundate these areas. This stilling action causes extensive deposition to occur before the silt reaches the main cavity of the reservoir.

Strength Characteristics of Recycled Concrete by Recycled Aggregate in Incheon Area Waste Concrete (인천지역의 콘크리트 폐기물을 재생골재로 활용한 재생콘크리트의 강도특성)

  • Jang, Jea-Young;Jin, Jung-Hoon;Cho, Gyu-Tae;Nam, Young-Kug;Jeon, Chan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.197-208
    • /
    • 2003
  • This paper is to determine the possibility of re-using waste concrete from Incheon city area. The strength test was conducted with five aggregate compounds which was replaced a natural aggregate with recycled aggregate. After checking the physical characteristics of recycled aggregate compounds, the mix design of recycled concrete was conducted. For the relatively comparison between natural and recycled compounds, while the unit aggregate weight was changed, other conditions were fixed. The freezing and thawing test which included fly-ash and super-plastezer were performed to check the durability and workability when recycling waste concrete. In the physical characteristics of recycled aggregate, it was found that the specific gravity of recycled coarse aggregate and recycled fine aggregate satisfied the first grade of recycle specification(KS), and all compounds of recycled aggregate also satisfied the second grade of absorption specification, Especially up to the 50% substitution of recycled aggregate is equal to or a bit lower than that of convention aggregate. In comparison with conventional concrete, the recycled concrete is lower than maximum by 7% in compressive strength decreasing rate after freezing-thawing test. From now, although most of recycled concrete was used to the building lot, subgrade, asphalt admixture, through the result. It was proved that possibility of re-using recycled aggregate as the substructure of bridge, retaining wall, tunnel lining and concrete structure which is not attacked the drying shrinkage severely.