• Title/Summary/Keyword: 광 CVD

Search Result 51, Processing Time 0.034 seconds

The improvement of characteristics for hydrogenated amorphous silicon thin films by photo-induced CVD (광 CVD에 의한 비정질 실리콘 박막 특성 향상)

  • 김용상;이성규;전명철;박진석;한민구
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 1994
  • The purpose of this work is to investigate the interface characteristics of hydrogenated amorphous silicon thin films prepared by PECVD and photo-induced CVD and to examine the annealing effects of ultraviolet irradiation on hydrogenated amorphous silicon thin films which were degraded by visible light illumination. The interface layer thickness of films deposited by photo-induced CVD was about 600-900.angs. while that by PECVD was about 1000-1300.angs.. These results can show that the quality of interface layer in photo induced CVD film is better than that in PECVD sample. The electrical properties are improved by ultraviolet irradiation on visible light soaked a-Si:H films using photo-CVD light sources, probably due to the fact that UV generates phonons in a-Si:H films and anneal the meta stable defects.

  • PDF

Dislocation Analysis of CVD Single Crystal Diamond Using Synchrotron White Beam X-Ray Topography (가속기 백색광 X-Ray Topography를 이용한 CVD 단결정 다이아몬드 내부 전위 분석)

  • Yu, Yeong-Jae;Jeong, Seong-Min;Bae, Si-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.192-195
    • /
    • 2019
  • Single-crystal diamond obtained by chemical vapor deposition (CVD) exhibits great potential for use in next-generation power devices. Low defect density is required for the use of such power devices in high-power operations; however, plastic deformation and lattice strain increase the dislocation density during diamond growth by CVD. Therefore, characterization of the dislocations in CVD diamond is essential to ensure the growth of high-quality diamond. In this work, we analyze the characteristics of the dislocations in CVD diamond through synchrotron white beam X-ray topography. In estimate, many threading edge dislocations and five mixed dislocations were identified over the whole surface.

Plasma CVD 법에 의한 ITO 박막제작

  • 김형근;박연수;곽민기;장경동;손상호;이상윤;이상걸
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.86-86
    • /
    • 1994
  • 박막 EL소자의 투명전극으로 제작된 ITO막의 전기적, 광학적 특성을 조사하였다. Plama CVD방법으로 제작된 ITO막은 증착시 산소결핍으로 인한 비 다량결합(non-stochiometry) 에 의해 In이 석출되어 흑화현상이 일어나 전기전도도와 광투과율을 향상을 위해 산소분위기에서 30$0^{\circ}C$로 4분간 열처리를 행하였다. 한편 ITO막의 비저항 $\rho$와 광투과율 T를 Van der pauw법과 단색 분광계로 각각 측정하였다. 그 결과 상온에서 10-15$\Omega$/$\square$의 면저항과 400-1000nm의 파장영역에서 85-95%의 광투과율을 가져 박막 EL소자의 투명전극 조건을 만족하였다. 열처리에 대학 ITO막의 구조적 특성을 알아보기 위해 X-선회절장치(JEOL.JDX-8030)로 조사하였다. Fig.1은 X-선 회절 패턴을 나타낸다. 열처리후 ITO막은 상대적으로 최대 강도(peak intensity) 가 증가함으로써 열처리에 의해 결정성 향상이되었음을 알수 있다. Fig.2는 파장에 따른 ITO막의 광투과도를 나타낸다.

  • PDF

합성 그래핀을 이용한 김서림 방지 필름 제작

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.357-357
    • /
    • 2011
  • 그래핀은 육각형 구조로 이어진 탄소원자가 단일층을 형성한 현존하는 가장 얇은 나노물질로서, 면상에서의 우수한 전기적 열적 전도도와 화학적 안정성 등으로 많은 주목을 받고 있다. 이러한 그래핀의 우수한 특성들은 뛰어난 기계적 특성 및 높은 광 투과성과 맞물려 향후 플렉서블 투명전도막 등으로의 응용이 기대되고 있는 상태이다. 이러한 그래핀을 얻는 방법에는 물리 화학적 박리법, 산화규소의 흑연화, 열화학기상증착법(CVD) 등 많은 방법들이 존재하는데, 이중 CVD방법이 대면적으로 두께 균일도가 높은 그래핀을 얻는데 가장 적합한 방법으로 알려져 있다. 본 연구에서는 CVD방법을 이용하여 합성한 그래핀을 투명글래스 위에 전사하는 공정을 통하여 김서림방지(antifogging) 필름을 제작하였고, 그 면 발열특성에 대하여 조사하였다. 메탄가스를 원료가스로 합성한 그래핀 투명막은 가시광 영역에서 80% 이상의 투광도와 500~600 ${\Omega}/sq$ 정도의 면저항을 나타내었다. 또한 금 나노입자 또는 플라즈마 도핑 등의 후처리 공정을 통하여 면 발열특성의 향상을 도모하였으나 합성상태의 그래핀을 이용하는 것이 가장 우수한 면발열특성을 나타낸 것으로 확인하였다. 본 연구결과는 겨울철 자동차 유리표면의 성에 제거 등의 응용에 유용할 것으로 기대된다.

  • PDF

Low-resistance Transparent Plane Heating System using CVD Graphene (CVD 그래핀을 이용한 저저항 투명면상발열 시스템)

  • Yoo, Byongwook;Han, Sangsoo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 2019
  • To prevent the low heating effect of heating system caused by the high sheet resistance of CVD graphene, multi-layered graphene was laminated to implement a Transparent plane heating system with good optical properties of low-resistance. Low-resistance plane heating system implemented by $300{\times}400{\times}5mm$ heating plane laminated multi-layered CVD graphene film and PWM control system to drive efficient power. A plane resistance value of $85.5{\Omega}/sq$ was measured on average for 4-layer CVD graphene film used as a heating plane. Thus, the transfer by thermal film as the method of implementing low-resistance CVD graphene is reasonable. The experimental results of heat test show that an average heat-rise rate in low-resistance, transperent plane heating system using CVD graphene is $10^{\circ}C/min$ and has an optical transmittance rate of 86.44%. Therefore, the proposed heating system is applicable to large window glass and vehicle heating window-shild-glass.

Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables (유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성)

  • Lim, Nam-Yun;Lee, Seung Yong;Park, Jaehyeon;Kwak, Jini;Park, Hai Woong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/ alumina beads at $600^{\circ}C$, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.

Deposition and Characterization of SiN and SiC for Membrane Applications

  • 강정호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.83-90
    • /
    • 1998
  • LPCVD를 이용하여 증착한 SiN과 ECR plasma CVD를 이용하여 증착한 SiC의 물 성과 적용가능성을 시험하였다. LPCVD로 증착된 SiN은 열처리 없이 저 응력의 박막형성이 가능했으며 가시광투과도 표면 평활도 역시 우수하였다. 탄성계수 값이 크지 않아 자성센서 의 지지구조로 사용할 경우 자기공명에 의한 진동을 크게 구속하지 않아 유리할것으로 기대 된다. 반면 ECR plasma CVD로 증착된 SiC는 SiN보다는 못하지만 다른 방법에 의해 증착 된 SiC에 비해서는 가시광 투과도 및 표면 평활도가 후수하므로 X-선 조사에 대한 안정성 과 더불어 X-선 마스크용 membrane으로서 사용이 적절할 것으로생각된다.

The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System (광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

Effect of Deposition Pressure on the Conductivity and Optical Characteristics of a-Si:H Films (증착 압력이 a-Si:H막의 전도도와 광학적 특성에 미치는 영향)

  • Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.98-104
    • /
    • 1999
  • In this work, we investigated hydrogen content, bond structure, and electrical properties of a-Si:H films prepared by ECR plasma CVD as a function of pressure. In general, the photo sensitivity of a-Si:H films prepared by CVD method decreases as the deposition rate increases, but the photo sensitivity of a-Si:H films prepared by ECR plasma deposition method increases as the deposition rate increases. In the same condition of microwave power, the ratio of $SiH_4/H_2$, and pressure, though film thickness increases linearly with deposition time and hydrogen content in the film is constant, photo conductivity can be decreased because $SiH_2$ bond is made more than SiH bond in the short reaction time. According to increase pressure in the chamber, SiH bond in the film increase and optical energy gap decrease. So, photo conductivity can be increased. But photo sensitivity decreased as dark conductivity increase. It must be grown in the condition of low pressure and hydrogen gas for taking the a-Si:H film of high quality.

  • PDF

Characteristics of ZnO Thin Films Prepared by Photo-CVD (광 CVD법으로 제작한 ZnO박막의 특성)

  • 박계춘;정해덕;정운조;류용택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.117-121
    • /
    • 1992
  • Zinc oxide thin films were obtained from zinc acetate-2-water and oxygen by photo-CVD method. (1) The formation of ZnO films sarts from 100[$^{\circ}C$] and the deposition rate increases with increasing substrate temperature. (2) The rate of deposition was also affected by flow rates of O$_2$(reaction gas) and N$_2$(Carrier gas). (3) The deposition rate decreases with increasing O$_2$mole rate. (4) The transmission of the films was independent of oxygen mole rate and it was largely affected substrate temperature. (5) The electric resistivity of th films was largely varied at oxygen mole rate 10[%] and above 20[%], a plateau was encountered. Also, it increases with increasing substrate temperature. As the results, at substrate temperature: 200[$^{\circ}C$]; O$_2$gas mole rate:10[%]; reation time:10[min] pressure: 10$\^$-2/[atm], deposition rate; transmittance; resistivity were 780[A$\^$0/; 94[%]; 7${\times}$10$\^$-2/[$\Omega$$.$cm] respectively.

  • PDF