• Title/Summary/Keyword: 광 암호화

Search Result 82, Processing Time 0.025 seconds

3D image encryption using integral imaging scheme and pixel-scrambling technology (집적 영상 방식과 랜덤 픽셀 스크램블링 기술을 이용한 3D 영상 암호화)

  • Piao, Yong-Ri;Kim, Seok-Tae;Kim, Eun-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.85-88
    • /
    • 2008
  • 본 논문에서는 집적 영상 (integral imaging) 방식과 픽셀 스크램블링 (pixel scrambling) 기술을 이용한 광 영상 암호화 (optical image encryption) 방법을 제안한다. 제안한 방법의 부호화 과정에서는 먼저 입력영상을 여러 개의 작은 사이즈의 블록으로 나누어 픽셀 스크램블링을 한 다음 집적 영상 기술을 이용하여 요소 영상(elemental image)을 생성하고, 이 영상의 안정성을 위하여 2차 픽셀 스크램블링을 수행하여 최종 암호화된 영상을 얻는다. 그리고 복호화 과정에서는 암호화된 영상에 광학적인 집적 영상 복원 기법과 역 픽셀 스크램블링 방법을 사용하여 원 영상을 복원한다. 제안하는 광 암호화 방법에 대해서 크로핑과 같은 데이터 손실 및 노이즈에 대한 컴퓨터 적으로 모의실험을 수행하여 강인성과 유용성을 보였다.

  • PDF

Optical security system using multi-phase separation and phase-wrapping method (다중 위상 분할과 위상 랩핑 방법을 이용한 광 암호화 시스템)

  • Shin Chang Mok;Kim Soo Joong;Seo Dong Hoan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, we proposed an optical security system based on a gray-image exclusive-OR encryption using multi-phase separation and phase-wrapping method. For encryption, a gray image is sliced into binary images, which have the same pixel value, and these images are encrypted by modified XOR rules with binary random images. The XORed images and the binary images respectively combined and converted into full phase images, called an encrypted image and a key image. For decryption, when the encrypted image and key image are used as inputs on optical elements, Practically due to limited controllability of phase range in optical elements, the original gray image cannot be efficiently reconstructed by these optical elements. Therefore, by decreasing the phase ranges of the encrypted image and key image using a phase-wrapping method and separating these images into low-level phase images using multi-phase separation, the gray image can be reconstructed by optical elements which have limited control range. The decrytion process is simply implemented by interfering a multiplication result of encrypted image and key image with reference light. The validity of proposed scheme is verified and the effects, which are caused by phase limitation in decryption process, is analyzed by using computer simulations.

Optical encryption system using random divided image and joint transform correlator (무작위 분할 영상과 결합변환 광 상관기를 이용한 암호화 시스템)

  • 최상규;서동환;신창목;김수중;배장근
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.636-642
    • /
    • 2003
  • We proposed the optical system using two divided halftone images to hide the original image and a joint transform correlator. The encryption procedure is performed by the Fourier transform of the product of each divided image by visual cryptography and the same random image which is generated by computer processing. As a result, we can obtain two Fourier divided images which are used as the encrypted image and the decrypting key, respectively. In the decryption procedure, both the encrypted image and the decrypting key are located on the joint input plane. Then the original image is reconstructed on a CCD camera which is located in the output plane. An autocorrelation term of joint transform correlator contributes to decrypt the original image. To demonstrate the efficiency of the proposed system, computer simulations and noise analysis are performed. The result show that the proposed system is a very useful optical certification system.

An Implementation of Stable Optical Security System using Interferometer and Cascaded Phase Keys (간섭계와 직렬 위상 키를 이용한 안정한 광 보안 시스템의 구현)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.101-107
    • /
    • 2007
  • In this paper, we proposed an stable optical security system using interferometer and cascaded phase keys. For the encryption process, a BPCGH(binary phase computer generated hologram) that reconstructs the origial image is designed, using an iterative algorithm and the resulting hologram is regarded as the image to be encrypted. The BPCGH is encrypted through the exclusive-OR operation with the random generated phase key image. For the decryption process, we cascade the encrypted image and phase key image and interfere with reference wave. Then decrypted hologram image is transformed into phase information. Finally, the origianl image is recovered by an inverse Fourier transformation of the phase information. During this process, interference intensity is very sensitive to external vibrations. a stable interference pattern is obtained using self-pumped phase-conjugate minor made of the photorefractive material. In the proposed security system, without a random generated key image, the original image can not be recovered. And we recover another hologram pattern according to the key images, so can be used an authorized system.

  • PDF

Design of After-processing Encrypted Record System for Copy Protection of Digital Video Optical Discs (디지털 비디오 광 디스크의 복제방지를 위한 후처리 암호화 기록 장치의 설계)

  • Kim, Hyeong-Woo;Joo, Jae-Hoon;Kim, Jin-Ae;Choi, Jung-Kyeng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1435-1440
    • /
    • 2010
  • This paper presents encrypted secret code recording system which can insert an unique manufacture ID code after complete disc process. First, we detect a memory block synchronizing signal which is SYNC. by using FPGA, then, design a recording pattern to write Multi Pulse. Finally, a method that any data is recorded in any place in any data area of optical disc by using a FPGA was proposed. Newly proposed method in this paper that any user records user data in protected data areas on digital video optical discs, can be very useful for effective software copy protection, and can be applicable to encrypted record on high density DVD in near future.

Demonstration of 10 Gbps, All-optical Encryption and Decryption System Utilizing SOA XOR Logic Gates (반도체 광 증폭기 XOR 논리게이트를 이용한 10 Gbps 전광 암호화 시스템의 구현)

  • Jung, Young-Jin;Park, Nam-Kyoo;Jhon, Young-Min;Woo, Deok-Ha;Lee, Seok;Gil, Sang-Keun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.237-241
    • /
    • 2008
  • An all-optical encryption system built on the basis of electrical logic circuit design principles is proposed, using semiconductor optical amplifier (SOA) exclusive or (XOR) logic gates. Numerical techniques (steady-state and dynamic) were employed in a sequential manner to optimize the system parameters, speeding up the overall design process. The results from both numerical and experimental testbeds show that the encoding/decoding of the optical signal can be achieved at a 10 Gbps data rate with a conventional SOA cascade without serious degradation in the data quality.

Identification and Decryption of Fully phase-encrypted image Using Joint Transform Correlator Structure (결합변환상관기 구조를 이용한 위상 암호화 영상의 인식 및 복호화)

  • 신창목;김수중
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2004.06a
    • /
    • pp.95-98
    • /
    • 2004
  • 본 논문에서는 결합변환상관기(joint transform correlator)와 위상 암호화된 영상들을 이용하여 영상의 인식 및 복호화가 가능한 광 암호화 시스템을 제안하였다. 그레이 값을 가지는 원 영상은 동일한 그레이 값을 가지는 이진 영상으로 나누어 표현할 있다. 이러한 이진 영상들을 각각의 다른 이진 무작위 영상과 위상 부호화한 XOR 연산을 이용해 암호화할 수 있으며. 암호화한 영상들을 결합한 후 위상 부호화 과정을 거쳐 최종 암호화 영상를 구한다. 키 영상은 암호화에 사용된 각각의 이진 무작위 영상들을 최종 암호와 영상를 얻을때의 과정처럼 결합하여 역시 하나의 영상으로 구할 수 있다. 최종 암호화 영상과 키 영상을 제안한 결합변환상관기의 입력으로 사용하여 구한 상관치는 높고 폭이 좁은 특성을 가지고 있으므로 분별성능이 좋은 인식 시스템을 구현할 수 있을 뿐만 아니라 복호화 영상도 구할 수 있다. 컴퓨터 모의 실험으로 제안한 방법을 확인해보았다.

  • PDF

Binary Phase-based Optical Encryption System Using the Principle of Interference (간섭의 원리를 이용한 이진 위상의 광학적 암호화 시스템)

  • 서동환;신창목;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • In this paper, we propose an improved image decryption system using a phase-encoded image and the principle of interference. An original image and a random image consist of only binary values. The phase-encoded original image is encrypted into a binary phase-only image by multiplying with a phase-encoded random key. Therefore the phase-encoded images have two phase values 0 or $\pi$. The proposed decryption technique is simply performed by interfering between a reference wave and a direct pixel-to-pixel mapping of the encrypted image with a decrypting key. Optical experiments confirmed that the proposed technique is a simple and robust architecture for optical encryption.

Optical encryption system using visual cryptography and virtual phase images (시각 암호화와 가상 위상영상을 이용한 광 암호화 시스템)

  • 김인식;서동환;신창목;조규보;김수중;노덕수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.630-635
    • /
    • 2003
  • We propose an encryption method using visual cryptography and virtual phase images. In the encryption process, the original image is shared by virtual images and the decryption key image. We multiply the virtual phase images with each complex image, which has the constant value of its sum after performing the phase modulation of the virtual images and the decryption key. The encryption cards are made by Fourier transforming the multiplied images. It is possible to protect information about the original image because the cards do not have any information from the original image. To reconstruct the original image, all the encryption cards are placed on each path of a Mach-Zehnder interferometer and then the lights passing through them are summed. Since the summed image is inverse Fourier transformed by a Fourier lens, the phase image is multiplied with the decryption key and the output image is obtained in the form of intensity on the CCD plane. Computer simulations show a good performance of the pro-posed optical security system.

Optical Security System Based on the Phase Characteristic of Joint Transform Correlator (결합변환 상관기의 위상특성을 이용한 광 암호화 시스템)

  • 박세준;서동환;김수종
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.400-407
    • /
    • 2003
  • In this paper an optical encryption system, which can decrypt the original image by using the autocorrelation terms of a JTC, is proposed. Unlike the classical JTC, the joint input plane of the proposed system is composed in a frequency domain not a spatial domain, thus it needs only one Fourier transformation. To use like this, the phase component appeared in the output plane of JTC should be considered. We presents the effect of phase and provides the solution. An original image is encrypted to a complex-valued random image. The original image is reconstructed using the autocorrelation terms which is the main drawback of JTC, therefore the proposed system is more suitable for JTC and real time processing. By computer simulation and optical experiment, the analysis for the phase effect and the performance of the proposed system are confirmed.