• Title/Summary/Keyword: 광학 모델링

Search Result 151, Processing Time 0.027 seconds

A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System (Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구)

  • Hong Dae Gi
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.18-27
    • /
    • 2023
  • In this paper, the structural-thermal-optical performance analysis of the mirror was performed by setting the laser heat source as the boundary condition of the thermal analysis. For the laser heat source model, the Beer-Lambert model considering semi-transparent optical material based on Gaussian beam was selected as the boundary condition, and the mechanical part was not considered, to analyze the performance of only the mirror. As a result of the thermal analysis, thermal stress and thermal deformation data due to temperature change on the surface of the mirror were obtained. The displacement data of the surface due to thermal deformation was fitted to a Zernike polynomial to calculate the optical performance, through which the performance of the mirror when a high-energy laser was incident on the mirror could be predicted.

The 3D Modeling Data Production Method Using Drones Photographic Scanning Technology (드론 촬영 기반 사진 스캐닝 기술을 활용한 3D 모델링데이터 생성방법에 관한 연구)

  • Lee, Junsang;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.874-880
    • /
    • 2018
  • 3D modeling is extensively used in the field of architecture, machinery and contents production such as movies. Modeling is a time-consuming task. In order to compensate for these drawbacks, attempts have recently been made to reduce the production period by applying 3D scanning technology. 3D scanning for small objects can be done directly with laser or optics, but large buildings and sculptures require expensive equipment, which makes it difficult to acquire data directly. In this study, 3D modeling data for a large object is acquired using photometry with using drones to acquire the image data. The maintenance method for uniform spacing between the sculpture and the drone, the measurement method for the flight line were presented. In addition, we presented a production environment that can utilize the obtained 3D point cloud data for animation and a rendered animation result to find ways to make it in various environments.

Calibration of Fisheye Lens Images Using a Spiral Pattern and Compensation for Geometric Distortion (나선형 패턴을 사용한 어안렌즈 영상 교정 및 기하학적 왜곡 보정)

  • Kim, Seon-Yung;Yoon, In-Hye;Kim, Dong-Gyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we present spiral pattern which suits for optical simulator to calibrate fisheye lens and compensate geometric distortion. Using spiral pattern, we present calibration without mathematical modeling in advance. Proposed spiral pattern used to input image of optical simulator. Using fisheye lens image, we calibrate a fisheye lens by matching geometrically moved dots to corresponding original dots which leads not to need mathematical modeling. Proposed algorithm calibrates using dot matching which matches spiral pattern image dot to distorted image dot. And this algorithm does not need modeling in advance so it is effective. Proposed algorithm is enabled at processing of pattern recognition which has to get the exact information using fisheye lens for digital zooming. And this makes possible at compensation of geometric distortion and calibration of fisheye lens image applying in various image processing.

Study on the Current Spreading Effect of Blue GaN/InGaN LED using 3-Dimensional Circuit Modeling (3차원의 회로 모델링을 이용한 청색 GaN/InGaN LED의 전류 확산 효과에 관한 연구)

  • Hwang, Sung-Min;Shim, Jong-In
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • A new and simple method of 3-dimensional circuit modeling and analysis is proposed and verified experimentally for the first time by determining 3-dimensional current flow and 2-dimensional light distribution in blue InGaN/GaN multi-quantum well (MQW) light emitting diode (LED) devices. Circuit parameters of the LED consist of the resistance of the metallic film and epitaxial layer, and the intrinsic diode which represents the active region emitting the light. The circuit parameters are extracted from the transmission line model (TLM) and current-voltage relation. We applied the >> proposed method and extracted circuit parameters to obtain the light emission pattern in a top-surface emitting-type LED. The current spreading effect is analyzed theoretically and quantitatively with a variation of the resistance of metallic and epitaxial layers. The emitting-light distribution of the fabricated blue LED showed a good agreement with the analyzed result, which shows the dark emission intensity at the corner of the p-electrode.

Modeling and fabrication of $1.31/1.55\mu\textrm{m}$ coarse WDM optical directional coupler using $Ag^+-Na^+$ ion-exchanged glass ($Ag^+-Na^+$이온교환법을 이용한 $1.31/1.55\mu\textrm{m}$ 두파장 방향성 광 결합기의 모델링 및 제작)

  • 강동성
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.335-339
    • /
    • 2000
  • A $1.31/1.55\mu\textrm{m}$ coarse WDM opncal dIrectional coupler that conslsls of two idenlical straight channel waveguides in BK7 glass has been fabricated. The separatIOn between two channel waveguides is $8\mu\textrm{m}$ and the wavegu.ide width is $4\mu\textrm{m}$ . Especlally, we assumed that the index profile is Gaussian function and complementary error function in the width direction and depth direction, respectrvely. This directional coupler operating at $1.31/1.55\mu\textrm{m}$ with crosstalk of 18dB is demonstrated and has the 16 mm long length with 12.6 mm coupling region.region.

  • PDF

Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition (PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The complex refractive index of Diamond-like Carbon (DLC) thin films, which can be applied to optical devices or electrical devices, have been determined using optical methods. DLC thin films are grown on Si(100) substrates and vitreous silica substrates respectively, using the technique of plasma enhanced chemical vapor deposition (PECVD). The spectroscopic ellipsometry data($\psi$, $\Delta$) and the transmission spectra of these DLC films are obtained. These optical spectra are analyzed with the help of the Sellmeier dipersion relation and a quantum mechanically derived dispersion relation. Using spectroscopic ellipsometry data at their transparent region, the refractive index and the effective thickness of DLC films on vitreous silica are model calculated, Then the transmission spectra are inverted to yield the extinction coefficient spectra k(λ) at absorbing region. These spectra are fit to the quantum mechanical dispersion relation and the best fit dispersion constants are determined. The complex refractive indices are easily calculated with these constants. The spectroscopic ellipsometry data at the absorbing region in model calculated to give the packing densities and the degrees of surface microroughness of DLC films. Discussions are made in correlation with the growth condition of DLC films.

  • PDF

Feasibility Study of Non Local Means Noise Reduction Algorithm with Improved Time Resolution in Light Microscopic Image (광학 현미경 영상 기반 시간 분해능이 향상된 비지역적 평균 노이즈 제거 알고리즘 가능성 연구)

  • Lee, Youngjin;Kim, Ji-Youn
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.623-628
    • /
    • 2019
  • The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.

Application Analysis of Digital Photogrammetry and Optical Scanning Technique for Cultural Heritages Restoration (문화재 원형복원을 위한 수치사진측량과 광학스캐닝기법의 응용분석)

  • Han, Seung Hee;Bae, Yeon Soung;Bae, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.869-876
    • /
    • 2006
  • In the case of earthenware cultural heritages that are found in the form of fragments, the major task is quick and precise restoration. The existing method, which follows the rule of trial and error, is not only greatly time consuming but also lacked precision. If this job could be done by three dimensional scanning, matching up pieces could be done with remarkable efficiency. In this study, the original earthenware was modeled through three-dimensional pattern scanning and photogrammetry, and each of the fragments were scanned and modeled. In order to obtain images from the photogrammetry, we calibrated and used a Canon EOS 1DS real size camera. We analyzed the relationship among the sections of the formed model, efficiently compounded them, and analyzed the errors through residual and color error map. Also, we built a web-based three-dimensional simulation environment centering around the users, for the virtual museum.

Numerical Modeling of Optical Energy Transfer Based on Coherent Beam Combination under Turbulent Atmospheric Conditions (대기 외란 상황에서 결맞음 빔결합을 통한 광학 에너지의 전달 방법 수치 모델링)

  • Na, Jeongkyun;Kim, Byungho;Cha, Hyesun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.274-280
    • /
    • 2020
  • In this paper, the effect of atmospheric turbulence is numerically modeled and analyzed via a phase-screen model, in regard to long-range optical energy transfer using coherent beam combination. The coherent-beam-combination system consists of three channel beams pointing at a target at a distance of 1-2 km. The phase and propagation direction of each channel beam are assumed to be corrected in an appropriate manner, and the atmospheric turbulence that occurs while the beam propagates through free space is quantified with a phase-screen model. The phase screen is statistically generated and constructed within the range of fluctuations of the structure constant Cn2 from 10-15 to 10-13 [m-2/3]. Particularly, in this discussion the shape, distortion, and combining efficiency of the 3-channel combined beam are calculated at the target plane by varying the structure constant used in the phase-screen model, and the effect of atmospheric turbulence on beam-combination efficiency is analyzed. Analysis with this numerical model verifies that when coherent beam combination is used for long-range optical energy transfer, the received power at the target can be at least three times the power obtainable by incoherent beam combination, even for maximal atmospheric fluctuation within the given range. This numerical model is expected to be effective for analyzing the effects of various types of atmospheric-turbulence conditions and beam-combination methods when simulating long-range optical energy transfer.

Modeling of Active Layer and Injection-locking Characteristics in Polarized and Unpolarized Fabry-Perot Laser Diodes (편광 또는 무편광 패브리-페롯 레이저 다이오드의 활성층 및 주입 잠금 동작 특성 모델링)

  • Chung, Youngchul;Yi, Jong Chang;Cho, Ho Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2012
  • In this paper, injection-locking characteristics versus active layer structures in Fabry-Perot laser diodes (FP-LD) are compared. TE and TM gain spectra and peak gains versus carrier density in polarized and unpolarized multiple quantum well structures and in an unpolarized bulk structure are calculated. The calculated gain parameters are applied to a time-domain large-signal model to simulate the injection-locking characteristics. The results show that RIN in unpolarized FD-LDs is about 3 dB lower than that in a polarized FP-LD and that the eye characteristics of the unpolarized FP-LD are much better than those of the polarized FP-LD.