수은 원자 증기에 강한 레이저 광$(10-120GW/\textrm{cm}^2)$을 조사하여 수은 원자의 공명 다광자 이온화 과정을 연구하였다. 파장 560.7nm의 광자 4개를 흡수할 때 공명준위는 $6d ^1D_2$이다. 수은 증기압(0.1-3.0 Torr)과 레이저 파장(559-569nm)을 변화시키면서 큰 강도의 광원과 원자가 상호작용하여 생기는 AC Stark 이동과 line broadening의 변화를 조사하였고, 원자 밀도의 증가에 따라 이온화율의 증가가 둔화되다가 감소되는 것도 관측되었다. 이동계수 $\alpha$=0.6cm-1/GW/$\textrm{cm}^2$로 측정되었다. 특히, 이온화율의 레이저 강도 의존성을 나타내는 비선형 차수를 공명파장에서 측정한 결과 k=3을 얻었으며, 이론적인 결과와 비교하였다.
질소 도핑된 $WO_3$ ($WO_3$:N) 막을 반응성 RF 마그네트론 스퍼터링을 이용하여 상온에서 증착한 다음, $300^{\circ}C$에서부터 $500^{\circ}C$의 온도 구간에서 후열처리(post-annealing)하였다. $WO_3$ 내 질소 음이온은 O 2p valence state와의 mixing effect 의해 광학적 밴드갭을 줄임으로써 장파장 영역의 빛을 흡수할 수 있었다. 더욱이 $350^{\circ}C$ 이상의 후열처리에 의해 $WO_3$:N의 결정성이 크게 향상됨을 발견하였으며, 동일 온도에서 열처리된 순수한 $WO_3$ 막보다 광전기화학 특성이 휠씬 우수한 셀 성능을 가짐을 알 수 있었다.
본 실험에서는 HWE 방법으로 성장시킨 SnSe 단결정 박막에 대한 특성을 조사하였다. 성장된 박막의 결정 구조와 격자 상수를 알아보기 위하여 X-ray diffraction(XRD)에 의한 회절 패턴을 측정하고, 단결정 박막의 결정성을 확인하기 위하여 double crystal X-ray diffraction(DCXRD)에 의한 회절 패턴을 측정하여, 원료부와 열벽부 그리고 기판의 온도 변화에 따른 반치폭을 알아보았다. Rutherford back scattering(RBS)을 측정하여 Sn과 Se의 조성비를 확인하고, 실험값과 이론값의 차이를 조사하였다. 박막의 표면 상태는 atomic force microscopy(AFM) 사진과 주사 전자 현미경(SEM) 사진으로 관찰하여 결정구조와 성장 온도와의 연관성을 조사하였다. 광학 상수는 Spectroscopic Ellipsometry(SE) 방법을 이용하여 단결정 박막의 굴절률(n), 유전상수(${\varepsilon}$), 반사율(R) 그리고 흡수 계수(${\alpha}$) 등 광학 상수를 측정했다.
콤팩트디스크(CD-R; Compact DiskRecordable)를 성분별로 분리하여 제작하고, 다층 박막 구조를 만들어서 레이저빔의 에너지를 변화시켜 가면서 조사하여 각 성분 층에서의 최적 미소 점 마킹 조건과 홈 형성 과정에 관하여 연구하였다. 본 연구는 Q-스위치 Nd:YAG 레이저를 이용하여 준비된 각 시료의 표면에 27∼373 mJ 빔을 80 $\mu\textrm{m}$의 점적 크기로 조사하여 샘플에 형성된 흠 형태를 광학현미경(OM; Optical Microscope)과 광 결맞음 단층촬영기(OCT; Optical Coherence Tomography)로 비교-관찰하여 미소 점 마킹의 형성 과정을 분석하였다. 다층 박막에서 용융된 기판 층은 짧은 시간동안 충분한 열 흐름이 발생하여 증배의 형성을 야기하며, 반사 층과 염료 층 사이에 흡수된 에너지는 염료를 용융시키고 체적을 증가시켰으며, 증배가 식으면서 표면장력의 영향 및 레이저빔에 의한 순간적인 시편의 온도상승으로 기화와 반동압력에 의한 질량흐름 때문에 두 층의 경계면에서 홈과 외륜의 발생을 설명할 수 있었다. 따라서 다층 박막에서의 미소 점 마킹의 형성 과정은 표면장력, 용융 점성력, 층 두께, 다층 박막 성분 물질의 물리화학적ㆍ광학적 성질과 관계가 있음을 알 수 있었다.
감마선 폭발체는 1973년 처음으로 알려진 후 현재까지 많은 과학자들에 의해 연구되고 있다. 짝은 지속 기간을 가진 감마선 폭발체에 비해 비교적 긴 시간 척도를 가진 잔유휘광의 분광 분석자료는 감마선 폭발체 생성 환경 연구에 중요한 정보를 제공한다. 그러나, 모든 감마선 폭발체에서 모든 영역의 잔유휘광이 관측되는 것은 아니다. 전파나 엑스선 영역의 잔유휘광 관측 불능은 검출기나 광대역 모니터의 한계로 인한 문제로 보고 있으며, 광학 잔유휘광 관측 불능은 광원내부 또는 소속 은하내의 먼지 그리고 성간 매질의 흡수에 의한 것으로 보고 있다. 우리는 이러한 잔유휘광이 관측되지 않은 경우에 대해 의문을 가지고, 광학 관측으로 거리가 정해진 감마선 폭발체의 거리에 따른 에너지 영역별 잔유휘광 개수 분포를 비교 분석해 보았다. 그 결과 우리는 엑스선 잔유휘광이 관측된 감마선 폭발체들이나 광학 잔유휘광이 관측된 감마선 폭발체들의 거리 분포가 같다는 것을 알 수 있었다. 이같은 결과로부터 우리는 광학 잔유휘광이 성간 물질에 의한 소광으로 관측되지 않을 수 있다는 이론은 타당치 못하다는 결론을 주장해 본다.
탄소 나노 튜브는 탄소 원자들이 육각형의 벌집모양으로 서로 연결된 고분자 탄소동소체로 다중벽일 경우 $3000W{\cdot}m^{-1}{\cdot}K^{-1}$, 단일벽일 경우 $6000W{\cdot}m^{-1}{\cdot}K^{-1}$ 정도로 매우 높은 열전도도를 보인다. 본 연구에서는 단일 빔과 이중 빔 방법으로 열렌즈 효과를 이용하여, 1.5 M 다중벽 탄소 나노튜브 분산액의 투과율과 열확산도를 측정하였다. 단일 레이저 빔의 진행방향으로 시료를 움직이는 z-scan 방법을 통해 비선형 광학계수들을 구하고, 이중 레이저 빔을 이용하여 열확산도를 측정하였다. 펌프 빔으로는 파장 532 nm이고 세기가 100 mW인 DPSS (Diode-pumped solid state, DPSS) 레이저를 사용하였고, 프로브빔으로는 파장이 633 nm이며 세기가 5 mW인 He-Ne 레이저를 사용하였다. 실험 결과 농도가 9.99, 11.10, 16.65, 19.98 mM일 때 비선형 흡수계수는 각각 0.046, 0.051, 0.136, 0.169 m/W였다. 또한 비선형 굴절률은 0.20, 0.51, 1.25, $1.32{\times}10^{-11}m^2/W$였고, 열확산도 평균치는 $1.33{\times}10^{-6}m^2/s$이었다.
농업적 가뭄이 발생하면 토양의 수분이 감소하여 식생의 광합성 및 성장을 저해한다. 광합성을 통해 대기 중의 이산화탄소가 흡수되며 산소 생산량이 증가하는데, 이러한 광합성에 부정적인 영향이 생긴다면 대기 중의 이산화탄소 농도가 증가한다. 본 연구에서는 다중분광광학센서인 MODerate resolution Imaging Spectroradiometer (MODIS) 산출물을 이용하여 토양수분, 식생 활력 및 대기 중의 이산화탄소 농도 간의 관계를 분석하였다. 토양수분의 경우, 기존의 마이크로웨이브 센서는 낮은 공간 해상도로 제공되는 특징으로 인해 소규모 연구 지역 분석에 한계가 있어서 상대적으로 고해상도인 광학센서를 이용한 토양수분 산정 방법을 적용하였다. 또한, MODIS 총일차생산량(Gross Primary Productivity, GPP) 산출물을 이용하여 식생의 호흡과의 관계식을 이용하여 이산화탄소 플럭스를 계산하였다. 원격탐사 기반의 토양수분, 식생지수와 이산화탄소 플럭스를 국내의 극한 가뭄 발생시기인 2014년과 2015년도에 대하여 지점 관측 자료인 플럭스타워 값과 비교 분석하였다. 분석한 결과 토양수분과 식생지수 사이에는 한 달의 지체시간, 식생지수와 이산화탄소 플럭스 사이에는 2주 지체시간이 발생했을 때, 상관성이 높게 나타났다.
대한해협에서의 해수의 광학적 성질을 조사하기 위하여, 1950년 7월에 대한해협 체주도의 15개 관측점에서 투명도, 수색, 태양광의 4가지 색(Clear;$400\sim720nm,\;Red: 600\sim700nm,\;Green : 475\sim600nm,\;Blue; 400\sim475nm$)에 대한 해수의 표면조도 및 수중조도 등을 조사한 결과를 요약하면 다음과 같다. 1. 본 조사해역의 평균투명도는 18.3m($11.5\sim24m$)였고, 평균수색은 3.5($3\sim4$)였다. 2. 해수의 평균흡수계수는 적색광이 $0.129(0.090\sim0.270), 백색광이 0.098(0.063\sim0.183), 청색광이 0.087(0.036\sim0,142), 녹색연이 0.081(0.044\sim0.142)$순으로 적게 나타났다. 3. 해수의 흡수계수 $\kappa$와 투명도 D와의 관계는 적색광이 $\kappa=2.33/D$, 백색광이 $\kappa=1.72/D$, 음색광이 $\kappa=1.44/D$, 녹색광이 $\kappa=1.41/D$순으로 작게 나타났다. 4. 태양열선의 표면광에 대한 평균해중투과율은 녹색광(수심 5m층에서 $63.20\%$, 15m층에서 $30.47\%$, 30m층에서 $10.03\%$, 50m층에서 $2.24\%$), 청색광(수심 5m층에서 $62.70\%$, 15m층에서 $30.00\%$, 30m층에서 $9.75\%$, 50m층에서 $1.70\%$), 백색광(수심 5m층에서 $57.90\%$, 15m층에서 $23.40\%$, 30m층에서 $6.23\%$, 50m층에서$1.00\%$), 적색광(수심 5m층에서 $48.95\%$, 15m층에서 $14.81\%$ 30m층에서$2.76\%$, 50m층에서 $0.28\%$)의 순으로 적게 나타났다. 5. 천명도지에서의 태양열의 해중투과율은 녹색광이 표면광의 $23.89\%(16.5\sim38\%)$, 청색광이 $23.42\%(14\sim44\%)$, 백색광이 $17.29\%(12.7\sim27\%)$, 적색광이 $9.70\%(4.5\sim13\%)$의 순으로 적게 나타났다.
다른 물질에 비해 많은 우수한 특성을 가지고 있는 CuInSe2(CIS)박막 태양전지는 많은 연구자들에 의해 개발되어 오고 있다. CIS의 대표적인 장점으로는 직접천이형 밴드갭, 높은 흡수계수, 열 안정화상태 및 p형으로의 전도성물질의 가능성 등 다양하다. 또한 간단한 구조를 이용하여 유리같은 싼 기판을 이용하기 때문에 저가형 태양전지로서 많은 각광을 받고 있다. CIGS태양전지는 CIS의 In 사이트에 Ga을 도핑함으로서 만들어지는데 밴드갭은 약 1.4eV이다. CIS박막을 만드는 많은 방법이 존재하나 구성원소로부터 최적화된 조성을 찾을수 있는 방법이 가장 중요한 요소 중의 하나로 인식되고 있으며, 이런점에서 증발법 및 스퍼터링법 등 같은 진공방식이 비진공방식에 비해 훨씬 간편하게 조성비를 맞출수 있다. 그 중에 스퍼터링법은 대면적 박막태양전지로의 가능성으로 비출어 볼때 산업화를 위한 좋은 후보군이 될 수 있다. Selenization을 하기전에 Cu-In-Se의 전구체 조합은 여러개의 타겟으로부터 동시 스퍼터링법이나 다층 전구체법을 사용하여 준비되는데 어떤 방법이 되던지 Se의 부가적인 공급은 불가피하다. 지금까지 많은 관련 연구의 대부분인 구조적, 조성비적 그리고 광학적인 특성평가에 집중되어 오고 있는데, 전기적특성평가의 경우는 면저항, 비저항 같은 간단한 결과 위주로 보고되어 오고 있다. 또한 캐리어농도와 이동도에 대한 보고가 있음에도 불구하고 이해되기에는 충분치 못한 면이 많다.본 발표에서는 태양전지 제조 전단계로서 소다라임유리기판(SLG)위에 Mo의 유무에 따라 CIS박막의 전기적인 특성 변화에 대한 내용을 담고 있다. 소다라임유리($2cm{\times}2cm$)를 기판으로 사용하여 아세톤-에탄올 용액에 초음파세척을 수행하고, Mo 후면전극을 DC 스퍼터링방식을 이용하여 증착을 한다. SLG와 Mo이 코팅된 SLG를 각각 RF 스퍼터 챔버에 이송한 후 수증기 제거를 위해 약 10분간 예열을 한다. 샘플에 대한 전기적특성은 Hall효과 측정장치에 의해 측정이 되며 전기전도도, 캐리어농도, 이동도 및 전도형에 대한 정보가 각각의 변수에 따라 조사된돠. 부가적으로 구조적, 조성비적인 특성을 SEM,XRD 및 EDX를 통해 조사를 하여 전기적 특성에 따른 관계성을 검토한다. SLG와 Mo가 코팅된 SLG위의 CIS박막은 전기적으로 약간 다른 특성을 보일 것으로 예측되며, 이러한 기대를 바탕으로 조성비가 이상적인 화학양론에 근접할 때 p형으로서 제시될 수 있다는 것을 보여줄 것이다.
17~18% 대역의 고효율 결정질실리콘 태양전지를 양산하기 위하여 국내외에서 다양한 연구개발이 수행되고 있으며 국내 다결정실리콘 태양전지 양산에서도 새로운 구조와 개념에 입각한 공정기술과 관련 장비의 국산화에 집중적인 투자를 진행하고 있다. 주지하는 바와 같이, 태양전지의 광전효율은 표면에 입사되는 태양광의 반사를 제외하면 흡수된 광자에 의해 생성되는 전자-정공쌍의 상대적인 비율인 내부양자효율에 의존하게 된다. 실제 생성된 전자-정공쌍은 기판재료의 결정상태와 전기광학적 물성 등에 의해 일부가 재결합되어 2차적인 광자의 생성이나 열로서 작용하고 최종적으로 전자와 정공이 완전히 분리되고 전극에 포집되어 실질적인 유효전류로 작용한다. 16% 이상의 고효율 결정질 실리콘 태양전지 양산이 요구되고 있는 현실에서 광전효율 개선 위해 가장 우선적으로 고려되어야 할 변수는 입력 태양광스펙트럼에 대한 결정질 실리콘 표면반사율을 최소화하여 광흡수를 극대화하는 것이라 할 수 있다. 현재까지 다결정 실리콘 표면을 화학적으로 혹은 플라즈마이온으로 50-100nm 직경의 바늘형 피라미드형상으로 texturing 함으로 단파장대역에서 광반사율의 감소를 기대할 수 있기 때문에 결정질실리콘 태양전지효율 개선에 긍정적인 영향을 미치는 것으로 알려져 있다. 고효율 다결정실리콘 태양전지 양산공정에 적용하기 위해 마스크를 사용하지 않는, RIE기반 건식 저반사율 결정질실리콘 표면 texturing 패턴연구를 수행하였다. 마스크없이 표면 texturing이 완료된 시료들에 대하여 A1.5G 표준태양광스펙트럼의 300-1100nm 파장대역에서 반사율과 minority carrier들의 life time 분포를 측정하고 검토하여 공정조건을 최적화 하였다. 저반사율의 건식 결정질실리콘 표면 texturing에 가장 적합한 플라즈마파워는 100W 내외로 낮았고 $SF_6/O_2$ 혼합비율은 0.8~0.9 범위엿다. 본 연구에서 확인된 최적의 texturing을 위한 플라즈마공정 조건은 이온에 의한 Si표면원자들의 스퍼터링과 화학반응에 의한 증착이 교차하는 상태로서 확인된 최저 평균반사율은 ~14% 내외였고 p-형 결정질실리콘 표면 texturing 패턴과 minority carrier의 life time 상관는 단결정이 16uS대역에서 14uS대역으로 감소하는 반면에서 다결정은 1.6uS대역에서 1.7uS대역으로 오히려 미세한 증가를 보여 다결정 웨이퍼생산과정에서 발생하는 saw-damage 제거의 긍정적 효과와 texturing공정의 표면 결함발생에 의한 부정적 효과가 상쇄되어 큰 변화를 보이지 않는 것으로 해석된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.