DOI QR코드

DOI QR Code

Post-annealing Effect of N-incorporated $WO_3$ Films for Photoelectrochemical Cells

광전기화학 전지를 위한 질소 도핑된 $WO_3$ 박막의 후열처리 효과

  • Ahn, Kwang-Soon (School of Display and Chemical Engineering, Yeungnam University)
  • 안광순 (영남대학교 디스플레이화학공학부)
  • Published : 2009.09.30

Abstract

N-incorporated $WO_3$ ($WO_3$:N) films were synthesized using a reactive RF magnetron sputtering on unheated substrate and then post-annealed at different temperatures from 300 to $500^{\circ}C$ in air. The N anion narrowed optical band gap, due to its mixing effect with the O 2p valence states. Furthermore, it was found that the crystallinity of the $WO_3$:N films was significantly improved by the post-annealing at $350^{\circ}C$ and higher. As a result, the $WO_3$:N films exhibited much better photoelectrochemical performance, compared with pure $WO_3$ films post-annealed at the same temperature.

질소 도핑된 $WO_3$ ($WO_3$:N) 막을 반응성 RF 마그네트론 스퍼터링을 이용하여 상온에서 증착한 다음, $300^{\circ}C$에서부터 $500^{\circ}C$의 온도 구간에서 후열처리(post-annealing)하였다. $WO_3$ 내 질소 음이온은 O 2p valence state와의 mixing effect 의해 광학적 밴드갭을 줄임으로써 장파장 영역의 빛을 흡수할 수 있었다. 더욱이 $350^{\circ}C$ 이상의 후열처리에 의해 $WO_3$:N의 결정성이 크게 향상됨을 발견하였으며, 동일 온도에서 열처리된 순수한 $WO_3$ 막보다 광전기화학 특성이 휠씬 우수한 셀 성능을 가짐을 알 수 있었다.

Keywords

References

  1. Fujishima, A., and Honda, K., "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
  2. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science, 293, 269-271 (2001). https://doi.org/10.1126/science.1061051
  3. Khaselev, O., and Tumer, J. A, "A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting," Science, 280, 425-427 (1998). https://doi.org/10.1126/science.280.5362.425
  4. Lopez, C. M., and Choi, K. S., "Enhancement of Electrochemical and Photoelectrochemical Properties of Fibrous Zn and ZnO Electrodes," Chem. Commun., 3328-3330 (2005).
  5. Ghicov, A., Tsuchiya, H., Macak, J. M., and Schmuki, P., "Annealing Effects on the Photoresponse of $TiO_2$ Nanotubes," Phys. Status. Solidi. A, 203, R28-R30 (2006). https://doi.org/10.1002/pssa.200622041
  6. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K., and Grimes, C. A., "Enhanced Photocleavage of Water Using Titania Nanotube Arrays," Nano Lett., 5, 191-195 (2005). https://doi.org/10.1021/nl048301k
  7. O'Regan, B., and Gratzel, M., "A Low-cost, High-efficiency Solar Cell based on Dye-Sensitized Colloidal $TiO_2$ Films," Nature, 353, 737-740 (1991). https://doi.org/10.1038/353737a0
  8. Lee, S.-H., Deshpande, R., Parilla, P. A., Jones, K. M., To, B., Mahan, A. H., and Dillon, A. C, "Crystalline $WO_3$ Nanoparticles for Highly Improved Electrochromic Applications," Adv. Mater., 18, 763-766 (2006). https://doi.org/10.1002/adma.200501953
  9. Lee, S.-H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Pitts, J. R., Jorgensen, G., and Deb, S. K., "Alternating Current Impedance and Raman Spectroscopic Study on Electrochromic ${\alpha}-WO_3$ Films," Appl. Phys. Lett., 76, 3908-3910 (2000). https://doi.org/10.1063/1.126817
  10. Wang, Y., and Herron, N., "Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties," J. Chem. Phys., 95, 525-532 (1991). https://doi.org/10.1021/j100155a009
  11. Bosch, H., and Janssen, F., "Formation and Control of Nitrogen Oxides," Catal. Today, 2, 369-379 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  12. Tao, W. H., and Tsai, C. H., "$H_{2}S$ Sensing Properties of Noble Metal Doped $WO_3$ Thin Film Sensor Fabricated by Micromachining," Sensor. Actual B-Chem., 81, 237-247 (2002). https://doi.org/10.1016/S0925-4005(01)00958-3
  13. Miller, E. L., Paluselli, D., Marsen, B., and Rocheleau, R. E., "Development of Reactively Sputtered Metal Oxide Films for Hydrogen-Producing Hybrid Multijunction Photoelectrodes," Sol. Energ. Mat. Sol. C, 88, 131-144 (2005). https://doi.org/10.1016/j.solmat.2004.07.058
  14. Miller, E. L., Marsen, B., Paluselli, D., and Rocheleau, R., "Optimization of Hybrid Photoelectrodes for Solar Water-Splitting," Electrochem. Solid St., 8, A247-A249 (2005). https://doi.org/10.1149/1.1887196
  15. Santato, C, Ulmann, M., and Augustynski, J., "Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films," J. Phys. Chem. B, 105, 936-940 (2001). https://doi.org/10.1021/jp002232q
  16. Berger, S., Tsuchiya, H., Ghicov, A., and Schmuki, P., "High Photocurrent Conversion Efficiency in Self-Organized Porous $WO_3$," Appl. Phys. Lett., 88, 203119 (2006). https://doi.org/10.1063/1.2206696
  17. de Tacconi, N. R., Chenthamarakshan, C. R., Yogeeswaran, G., Watcharenwrong, A., de Zoysa, R. S., Basit, N A., and Rajeshwar, K., "Nanoporous $TiO_2$ and $WO_{3}$ Films by Anodization of Titanium and Tungsten Substrates: Influence of Process Variables on Morphology and Photoelectrochemical Response," J. Phys. Chem. B, 110, 25347-25355 (2006). https://doi.org/10.1021/jp064527v
  18. Paluselli, D., Marsen, B., Miller, E.L., and Rocheleau, R. E., "Nitrogen Doping of Reactively Sputtered Tungsten Oxide Films," Electrochem. Solid St., 8, G301-G303 (2005). https://doi.org/10.1149/1.2042629
  19. Wang, X. B, Li, D. M., Zeng, F., and Pan, F., "Microstructure and Properties of Cu-Doped ZnO Films Prepared by dc Reactive Magnetron Sputtering," J. Phys. D Appl. Phys., 38, 4104-4108 (2005). https://doi.org/10.1088/0022-3727/38/22/014
  20. Ahn, K.-S., Yan, Y, and Al-Jassim, M., "Band Gap Narrowing of ZnO:N Films by Varying rf Sputtering Power in $O_2/N_2$ Mixtures," J. Vac. Sci. Technol. B 25, L23-L26 (2007). https://doi.org/10.1116/1.2746053
  21. Han, J., Mantas, P. Q., and Senos, A. M. R., "Grain Growth in Mn-Doped ZnO," J. Eur. Ceram. Soc., 20, 2753-2758 (2000). https://doi.org/10.1016/S0955-2219(00)00220-X
  22. Senda, T., and Bradt, R. C, "Grain Growth in Sintered ZnO and ZnO-$Bi_2O_3$ Ceramics," J. Am. Ceram. Soc., 73, 106-114 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05099.x
  23. Ahn, K.-S., Shet, S., Deutsch, T., Jiang, C.-S., Yan, Y., Al-Jassim, M., and Turner, J., "Enhanced of Photoelectrochemical Response by Aligned Nanorods in ZnO Thin Films," J. Power Sources, 176, 387-392 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.034
  24. Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, Elsevier, New York, 1995.
  25. Ahn, K.-S., Lee, S.-H, Dillon, A. C, Tracy, C. E., and Pitts, R, "The Effect of Thermal Annealing on Photoelectrochemical Responses of $WO_3$ Thin Films," J. Appl. Phys. 101, 093524 (2007). https://doi.org/10.1063/1.2729472
  26. Keis, K., Vayssieres, L., Rensmo, H., Lindquist, S. E., and Hagfeldt, A., "Photoelectrochemical Properties of Nano- to Microstructured ZnO Electrodes," J. Electrochem. Soc., 148, A149-A155 (2001). https://doi.org/10.1149/1.1342165