• Title/Summary/Keyword: 광자결정

Search Result 239, Processing Time 0.034 seconds

Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom (인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정)

  • Cho, Sung-Koo;Choi, Sang-Hyoun;Na, Seong-Ho;Kim, Chan-Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.97-104
    • /
    • 2006
  • In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy Photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for $^{60}Co$ and $^{137}Cs$ photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom.

Direct Calculation of TRS-398 Quality Correction Factors for High Energy Photons (고에너지 광자선에 대한 TRS-398 선질보정인자의 직접 계산)

  • Shin Kyo-Chul;Oh Young-Kee;Kim Jeung-Kee;Kim Jhin-Kee;Kim Ki-Hwan;Jeong Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2006
  • In order to apply the TRS-398 dosimetry protocol developed by IAEA we directly calculated the quality correction factors for high energy photons. The calculations were peformed for seven commercial cylindrical chambers (A12, IC70, N23333, N30001, N30006, NE2571, PR06C/G). In comparison with quality correction factors given by TRS-398 our results were in good agreement within ${\pm}0.3%$ (maximum ${\pm}0.3%$) for all chambers and photon qualities.

  • PDF

Optical super-resolution for ultrahigh density optical data storage (초고밀도 광자료 저장을 위한 광학적 초해상)

  • Kim, Myeong-Jun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.243-245
    • /
    • 2009
  • 광학 현미경의 분해능이 파장에 따른 회절에 의해 결정된다. 이것을 극복하기 위해서 나노미터까지 분해능을 향상시키기 위해서 근접장 광학이 각광을 받고 있다. 본 보고에서는 흡수 에지 근처의 위상변화 특성에 기인한 초해상을 보고한다.

  • PDF

Highly-birefringent Photonic Crystal Fiber with Squeezed Lattice for Strain, Curvature and Temperature Sensing (큰 복굴절 특성을 가지는 광자결정 광섬유를 이용한 스트레인, 구부림 및 온도 특성)

  • Eom, Sung-Hoon;Kim, Gil-Hwan;Hwang, Hyu-Jin;Ma, Kyung-Sik;Lee, Kwan-Il;Jeong, Je-Myung;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.230-234
    • /
    • 2010
  • Highly-Birefringent Photonic Crystal Fiber (Hi-Bi PCF) is composed of a single material, silica, so that its temperature sensitivity is extremely low. Therefore, we propose afiber based Sagnac interferometer for measurement of strain and curvature independent of temperature variation. The sensitivities of strain and curvature (both axes) are measured to be $1.41\;pm/{\mu}{\varepsilon}$ and $0.93nm/m^{-1}$(slow axis Y), $-1.6\;nm/m^{-1}$(fast axis X), respectively.

Study on the Novel Fabrication Method of Highly Birefringent Photonic Crystal Fiber (새로운 구조의 큰 복 굴절을 가진 광자결정 광섬유의 제작에 관한 연구)

  • Ma, Kyung-Sik;Kim, Gil-Hwan;Hwang, Kyu-Jin;Eom, Sung-Hoon;Lee, Kwan-Il;Jung, Je-Myung;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.235-240
    • /
    • 2010
  • We fabricate highly birefringent photonic crystal fiber with new structure using a stack and draw method. Fabricated fiber has two big air holes, one at each side of the outside air cladding region, leading to core ellipticity during the drawing process. Birefringence of the fabricated Hi-Bi PCF is measured to be $2.29{\times}10^{-4}$ (at 1550 nm).