DOI QR코드

DOI QR Code

Highly-birefringent Photonic Crystal Fiber with Squeezed Lattice for Strain, Curvature and Temperature Sensing

큰 복굴절 특성을 가지는 광자결정 광섬유를 이용한 스트레인, 구부림 및 온도 특성

  • Eom, Sung-Hoon (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Gil-Hwan (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Hwang, Hyu-Jin (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Ma, Kyung-Sik (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Kwan-Il (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeong, Je-Myung (Optical Communication Laboratory, Division of Electrical Engineering, Hanyang University) ;
  • Lee, Sang-Bae (Photonics Sensor System Center, Korea Institute of Science and Technology (KIST))
  • 엄성훈 (한국과학기술연구원 포토닉스센서시스템센터) ;
  • 김길환 (한국과학기술연구원 포토닉스센서시스템센터) ;
  • 황규진 (한국과학기술연구원 포토닉스센서시스템센터) ;
  • 마경식 (한국과학기술연구원 포토닉스센서시스템센터) ;
  • 이관일 (한국과학기술연구원 포토닉스센서시스템센터) ;
  • 정제명 (한양대학교 광통신연구실) ;
  • 이상배 (한국과학기술연구원 포토닉스센서시스템센터)
  • Received : 2010.11.01
  • Accepted : 2010.12.07
  • Published : 2010.12.25

Abstract

Highly-Birefringent Photonic Crystal Fiber (Hi-Bi PCF) is composed of a single material, silica, so that its temperature sensitivity is extremely low. Therefore, we propose afiber based Sagnac interferometer for measurement of strain and curvature independent of temperature variation. The sensitivities of strain and curvature (both axes) are measured to be $1.41\;pm/{\mu}{\varepsilon}$ and $0.93nm/m^{-1}$(slow axis Y), $-1.6\;nm/m^{-1}$(fast axis X), respectively.

큰 복굴절 값을 갖는 광자결정광섬유는 실리카 단일 물질로 구성되어 온도 민감성이 매우 낮다. 이를 이용하여 온도변화에 영향을 받지 않는 스트레인 및 구부림 센서를 구현하였다. 이때, 스트레인 변화에 따른 민감도는 $1.41\;pm/{\mu}{\varepsilon}$ 이고, 구부림에 대한 민감도는 타원코어 장축 방향과 단축 방향으로의 구부렸을 때 각각 $0.93\;nm/m^{-1}$, $-1.6\;nm/m^{-1}$ 로 차이가 있었다.

Keywords

References

  1. T. Y. Cho, G. H. Kim, K. Lee, S. B Lee, and J. M. Jeong, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19-24 (2008). https://doi.org/10.3807/JOSK.2008.12.1.019
  2. G. H. Kim, T. Y. Cho, K. J. Hwang, K. Lee, K. S. Lee, and S. B. Lee, “Control of hollow-core photonic bandgap fiber ellipticity by induced lateral tension,” Opt. Express 17, 1268-1273 (2009). https://doi.org/10.1364/OE.17.001268
  3. N. A. Mortensen, “Effective area of photonic cystal fibers,” Opt. Express 10, 341-348 (2002). https://doi.org/10.1364/OE.10.000341
  4. F. Yu and S. Yin, Fiber Optic Sensors (Marcel Dekker, New York, USA, 2002).
  5. R. E. Slusher and B. J. Eggleton, “Nonlinear photonic crystals,” IEEE WCNC 2007, 4435-4440 (2007).
  6. W. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007). https://doi.org/10.1063/1.2722058
  7. K. Hwang, G. Kin, S. Lim, K. Lee, J. Park, and S. Lee, “A novel birefringent photonic crystal fiber and its application to curvature measurement,” JJAP to be published.
  8. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007). https://doi.org/10.1063/1.2775326
  9. O. Frazao, J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer,” Appl. Opt. 47, 2520-2523 (2008). https://doi.org/10.1364/AO.47.002520
  10. E. Suhir, “Elastic stability, free vibrations, and bending of optical glass fibers: effect of the nonlinear stress-strain relationship,” Appl. Opt. 31, 5080-5085 (1992). https://doi.org/10.1364/AO.31.005080
  11. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology,” IEEE Transsactions On Microwave Theory And Techniques MTT-30, 626-665 (1982).
  12. A. Ferrando, E. Silvestre, J. Mirret, J. Monsoriu, M. Andres, and P. Russell, “Designing a photonic crystal fiber with flattened chromatic dispersion,” Electron. Lett. 35, 325-327 (1999). https://doi.org/10.1049/el:19990189