• Title/Summary/Keyword: 광반응

Search Result 1,411, Processing Time 0.027 seconds

산화아연-다층 그래핀 양자점을 이용한 전기화학셀

  • Sim, Jae-Ho;Lee, Gyu-Seung;Go, Yo-Han;Yang, Hui-Yeon;Son, Dong-Ik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.321-321
    • /
    • 2016
  • 한경오염의 증가에 따라 광촉매 물질을 이용한 환경 정화의 필요성이 대두되고 있다 [1]. 광촉매와 전기화학셀은 빛을 이용하여 다른 에너지를 생산하는 능력을 가지고 있다. 이 전기화학셀의 성능향상을 위해서는 적절한 밴드갭을 이용한 광흡수의 증가, 전자재결합의 감소, 전기화학적 반응 표면의 증가가 필요하다. 산화 아연은 잘 알려진 n형 산화물 반도체로서 좋은 전기적 특성과 광촉매 성능으로 전기화학셀에 적합한 소재이다. 그러나 산화 아연은 액체 전해물질 상에서 안정성이 좋지 못하다 [2]. 이를 해결하기 위해 단층 그래핀 혹은 풀러렌(C60)을 이용하여 산화아연을 코팅하는 방법을 제안하였는데, 풀러렌을 사용 시 단층 그래핀에 비하여 전기화학셀의 전기화학적 반응은 높았으나 안정성은 더 떨어지는 모습을 보였다 [3]. 본 연구에서는 다층 그래핀을 이용하여 전기화학적 반응도 높고 안정성도 높은 산화아연-다층 그래핀 양자점의 합성 및 이를 이용한 전기화학셀 소자의 특성을 연구하였다. X선 회절법, 라만 분광법, 투과 전자 현미경, 광발광 분광기, 시간-분해성 광발광 분광기를 이용하여 산화아연-다층 그래핀 양자점의 특성을 분석하였고, 이를 이용하여 광양극을 제작하여 전기화학적 특성을 관측하였으며 로다민 B 염료를 이용한 분해 테스트를 통하여 광촉매 성능을 확인하였고 사이클 테스트를 통하여 안정성을 확인하였다.

  • PDF

Light-Induced Electron Transfer Reactions in FeⅡ-CoⅢ Binuclear Complexes ($Fe^{II}-Co^{III}$이핵착물의 광유발 전자이동반응)

  • Lee, Gyu Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.598-602
    • /
    • 1994
  • Light-induced electron transfer reaction within binuclear complex $(NC)_5FeII-L-CoIII(NH_3)_5$ was studied with steady-state photolysis and the rate constants were measured for various bridging lignands. klight and quantum yields for BP, PHEN, DAP having conjugation between metal binding sites were about $3{\times}10^{-2} sec^{-1}$ and 1, and for BPEA having no conjugation were about $2{\times}10^{-4} sec^{-1}$ and 0.03. Light-induced electron transfer reaction within binuclear complex was proved to be the chemical mechanism which had charge transfer excited state MLCT*.

  • PDF

Theoretical Studies on the Photoreaction Paths of the Monocyanopentaamminechromium(Ⅲ) Ion ([Cr(NH$_3$)$_5$CN]$^{2+}$이온의 광반응 경로에 대한 이론적 고찰)

  • Jong Jae Chung;Jong Ha Choi
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 1985
  • Photoreaction path for the monocyanochromium (Ⅲ) ion was inferred from the experimentally observed product ratio and theoretical analysis. The angular overlap model was used to analyze the d-orbital of various intermediates along a selected reaction coordinate and to determine quartet state energy level. A loss of equatorial ammine leads to pentacoordinated square pyramid with CN- ligand in an equatorial position. The SP(CNeq) intermediate undergoes a rearrangement by the N-Cr-CN bending. This process leads to a trigonal bipyramidal intermediate in which the CN- ligand is located in equatorial position. The subsequent association with a solvent molecule should probably proceed by lateral attack an one edge of the equatorial triangle. The assumption adopted above was consistent with experimental results.

  • PDF

Properties of Photo-Reactive Natural Polymer Derivatives and Its Applications (광반응성 천연 고분자의 특성 및 생체재료로의 활용 방안)

  • Kim, Eun-Hye;Jeong, Jin-Hong;Han, Ga-Dug;Son, Tae-Il
    • Prospectives of Industrial Chemistry
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • 최근 신체의 손상된 조직 및 세포를 재생하기 위해 약물 전달이 가능한 생체재료에 관한 연구가 활발히 이루어지고 있다. 이러한 생체재료 개발을 위해 생체적합하며 생분해성이 뛰어난 천연고분자가 큰 각광을 받고 있다. 기존의 약물 전달을 위한 고정화 방법은 화학적 가교가 널리 이용되어 왔으나, 이 방법의 여러 단점들이 보고된 바 있다. 이러한 단점을 극복하기 위해 광반응성 천연고분자를 이용한 약물광고정화 방법이 연구되어 왔다. 본 글에서는 광고정화를 위해 합성되는 여러 광반응성 천연고분자의 종류 및 특성과 생체재료로써의 활용 방안을 소개하고자 한다.

Morphological and Photosynthetic Responses of Rice to Low Radiation (일사 저하에 대한 벼의 형태적 특성 및 광합성 반응 변화)

  • Yang, Woon-Ho;Peng, Shaobing;Dionisio-Sese Maribel L.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • Light is an environmental component inevitably regulating photosynthesis and photo-morphogenesis, which are involved in the plant growth and development. Studies were conducted at the International Rice Research Institute, Philippines in 2004 and 2005, with aims to investigate 1) morphological responses of rice plants to low radiation, 2) morphological alteration of shade-grown plants when exposed to high light intensity, and 3) photosynthetic responses of shade-grown rice plants. Reduction in solar radiation by 40% induced increases in the area on a single leaf basis, biomass partitioning to leaves, and chlorophyll meter readings but brought about retardation of tiller development and decrease in above-ground biomass production of rice varieties. When the shade-grown plants from two weeks of transplanting to panicle initiation were exposed to full solar radiation after panicle initiation, they demonstrated less increase in chlorophyll meter readings and more decrease in leaf nitrogen concentrations from panicle initiation to flowering than control plants that were grown under the ambient solar radiation for whole growth period after transplanting. Shade-grown rice plants exhibited lower carbon assimilation rates but higher internal $CO_2$ concentrations on a single leaf basis than control plants, when measurements for shade-grown rice plants were made under the shading treatments. But when the measurements for shade-grown plants were made under the full solar radiation, light-saturated carbon assimilation rates were similar to control plants. Response of photosynthetic rates to varying light intensities was not considerably different between shading treatments and control. Yield reduction was observed in the shading treatments from panicle initiation to flowering and from flowering to physiological maturity, mainly by less spikelets per panicle and poor grain filling, respectively.

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF

Temperature Dependence of Molecular Arrangements and Curing Reactions of Reactive Mesogen (온도에 따른 반응성 액정의 분자 배열 및 경화 반응 연구)

  • Lee, Mongryong;Bae, Jin Woo;Song, Kigook
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.185-190
    • /
    • 2015
  • Since a transition from liquid crystal to crystal state is slow for the large photo-reactive liquid crystal molecules, it needs a long time for recrystallization of LC242 molecules when lowering the temperature of the liquid crystal. Although liquid crystals usually align along one direction, the directions of individual liquid crystal molecules are little different from one another with increasing temperature, resulting in changes of birefringence of the liquid crystal films. When the photo-reactive liquid crystals are photo-cured, faster curing kinetics and much larger curing degrees are observed for the films cured at the liquid crystal phase.

Photo-Alignment Mechanism Study of Poly(siloxane cinnamate) (폴리(실록산 신나메이트)의 광배향 메커니즘 연구)

  • Choi Ji-Won;Lim Ji-Chul;Song Ki-Gook
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.417-421
    • /
    • 2006
  • Photo -alignment of poly (siloxane cinnamate) (PSCN) was studied to better understand the alignment mechanism of cynnamoyl groups under various process conditions. DSC and polarized microscope studies showed that the isotropic temperature oi PSCN was about $105^{\circ}C$ and the liquid crystallinity, once formed, did not completely disappear even when the temperature went into the isotropic regions. UV/Vis absorption study suggested that the photo - dimerization was the main photo alignment mechanism and it's efficiency could be enhanced through the self-alignment of PSCN. It was also found that photo-dimerization was in competition with photo-fries reaction and the photo- alignment of PSCN was interfered with the excessive UV because of the strong photo-fries reaction. However, photo - fries reaction could be suppressed by adjusting the UV wavelength.

Photoaddition Reactions of trans-1,2-Bispyrazylethylene to Tetramethylethylene (테트라메틸에틸렌에 대한 트란스-1,2-비스피라질에틸렌의 광첨가반응)

  • Sang Chul Shim;Jin Ho Cho
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.325-328
    • /
    • 1979
  • trans-1,2-Bispyrazylethylene (BPE) undergoes photoaddition reaction to tetramthylethylene (TME) which appears to involve radical intermediates under conditions where the corresponding hydrocarbons are unreactive. This photoaddition reaction involves abstraction of an allylic hydrogen atom of TME by $^1(n,\;{\pi}^*)$ states of BPE having radical character. The major photoadduct is isolated by column chromatography and fractional vacuum sublimation and characterized to be 2,3-dimetyl-5,6-bispyrazyl-2-hexene.

  • PDF