• Title/Summary/Keyword: 광미 분석

Search Result 72, Processing Time 0.022 seconds

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis (노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석)

  • Il-Seok Kang;Jae-Joon Song;Thomas Pabst
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.54-70
    • /
    • 2024
  • Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

The Quality Properties of Mortar for Using Tailings from the Sangdong Tungsten One as Admixture for Concrete (상동광산 광미를 콘크리트용 혼화재료로 사용하기 위한 모르타르의 품질특성)

  • Choi Yun-Wang;Jung Moon-Young;Jung Myung-Chae;Koo Gi-Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.383-390
    • /
    • 2004
  • This study has focused on the possibility for recycling tailings from the Sangdong tungsten mine as admixture for concrete. The XRD(X-ray diffraction analysis) and PSA(Particle size analysis) were performed to find mineralogical characteristics. As a result of XRD analysis, the tailings from the Sangdong tungsten fine were composed of quartz, chlorite, anorthite and cordierite etc. As a result of KSLT for cement mortar mixed with tailings from the Sangdong tungsten mine, most of heavy metals were determined as below the guide line for waste material. In addition, the setting time and compressive strength of cement mortar mixed with tailings from the Sangdong tungsten mine were investigated. It was indicated that the initial and final set were retarded according to increasing replacement of tailings from the Sangdong tungsten mine. The compressive strength of mortar was decreased with increasing replacement of failings from the Sangdong tungsten mine.

Chemical Speciation and Potential Mobility of Heavy Metals in Tailings and Contaminated Soils (광미 및 오염된 토양에서 중금속의 존재형태 및 잠재적인 이동도)

  • 이평구;강민주;최상훈;신성천
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.87-98
    • /
    • 2004
  • Tailings and contaminated soils from Cheongyang mine and Seobo mine have been analysed by ICP-AES from 5-step sequential extraction method of multielement determination on extraction solutions at each step. As and Co within tailings and contaminated soils from Cheongyang mine and Seobo mine are mainly in the residual phase. In case of Cd, Cu and Zn, the most dominant fraction for tailings of Cheongyang mine is the oxidizable phase, while tailings of Seobo mine is dominated by the residual phase. In contaminated soils from Seobo mine, the predominant fraction for Cd, Cu and Zn is the Fe-Mn oxide phase. The exchangeable fraction of Pb in tailings from Cheongyang mine and Seobo mine is relatively high compared with those of other metals; whereas Pb fraction in contaminated soils from Seobo mine is largely associated with the residual fraction.

Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential (풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가)

  • 안주성;김주용;전철민;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.

Analysis of mine tailings, field soils, and paddy soils around Jingok abandoned mine (진곡광산 광미와 주변 토양의 오염조사)

  • 김선태;윤양희;박제안;심의섭
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.175-183
    • /
    • 1999
  • Mine tailings, field soils, and paddy soils around Jingok abandoned mine were analyzed In order to investigate their pollution levels of heavy metals and cyanide. The average contents of As, Cd, Cu. Hg. Pb, Zn, and CN ̄in mine tailings were 3.94$\times$$10^3$, 14.3, 266, 6.13, 4.07$\times$$10^3$, 2.51$\times$$10^3$, and 1.19mg/kg, respectively. The pollution indices calculated by the tolerance level of Kloke were 32~58 and the pH values were slightly acidic in mine tailings. In the field and paddy soils of Jingok abandoned mine area except for soils nearby mine tailings, concentrations of the heavy metals were less than standards of soil pollution of agricultural area in the environmental protection law.

  • PDF

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

덕음광산 광미의 심도별 고상시료에 대한 광물학적 연구

  • 문용희;문희수;박영석;송윤구;문지원
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.245-248
    • /
    • 2003
  • 현재까지 폐석 및 광미의 환경적 영향에 대한 많은 연구들은 중금속원소 등의 총 농도 분석 및 화학용매를 이용한 부분추출을 통해 중금속의 존재형태를 규명하는데 중점을 두었다. 하지만 대부분 지표환경에 제한되어 중금속 원소들의 오염원으로서의 잠재성, 즉 심도별 중감속원소 함유 광물의 pH 및 산화ㆍ환원 조건변화에 따른 용해도 특성과 이동성 등에 대한 정보를 제공하기에는 미흡하다. (중략)

  • PDF

Studies on Mineralogical and Geochemical Characterization of Tailings and Leachate Water in Yonghwa Mine, Yeongyang Area (영양 용화광산의 광미 및 침출수의 광물학적 및 지화학적 특성 연구)

  • Kang, Han;Kim, Young-Hun;Jang, Yun-Deug;Kim, Jeong-Jin
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.265-276
    • /
    • 2012
  • Current study includes the analysis of mine tailings and leachate water and prediction of species originated from the tailings. The variation of contaminants were measured upon the distance from the tailings to the nearby stream. The ions concentration was highest at the tailings and pit mouth and it becomes lower as it goes far away from the origin. This is the reason that the leachate was diluted with the uncontaminated stream water. The tailings were mainly classified into reddish one and yellow one. The main mineral of reddish tailings were quarts, illite, plumbojarosite and a small amount of sphalerite. The main mineral of yellow tailings were muscovite, quarts, plumbojarosite, and a small amount of chalcopyrite and sphalerite. Pb and Zn were found in the leachate in high concentration and become the major contaminants. These come from the dissolution of plumbojarosite and sphalerite contained in the mine tailings.

Contamination and Mobility of Toxic Trace Elements in Tailings of Samsanjeil Mine (삼산제일광산 광미 내 유해 미량원소의 오염 및 이동도)

  • Yeon Kyu-Hun;Lee Pyeong-Koo;Youm Seung-Jun;Choi Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.451-462
    • /
    • 2005
  • In order to examine the extent of environmental contamination at abandoned Samsanjeil Cu mines in Kosung-kun, Kyeongsangnam-do, we have investigated the contaminations and mobility of toxic trace elements from mine wastes including about 280,000 tonnages of tailings by chemical experiments (total extraction, partial extraction by 0.1N HCI and sequential extraction procedure). Total concentrations of trace elements showed that Cu, As, Co, Zn, Pb, and Cd concentrations in tailings were 14.0, 3.6, 3.1, 2.1, 2.1 and 1.6 times greater than those in background soil, respectively. From the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals decrease in order of $Zn(29.0\%)>Cu(12.3\%)Pb(9.6\%)>Cd(3.0\%)>As=Co(0.0\%)$. Based on the concentrations, chemical speciations of tailings, waste rock and nearby soil, it was revealed that Cu and Zn were the most possible elements to contaminate the surrounding environment in Samsanjeil mine area. In addition, the tailings had total trace metal concentrations below Dutch guideline values except Cu, and they might not affect adverse impact on environment.

The sintering characteristics of fly ash-clay system with mine tailing (플라이애쉬-점토-광미계의 소결특성)

  • Kim, Kyung-Nam;Woo, Dong-Myung;Park, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.259-265
    • /
    • 2011
  • This research was performed to stabilize heavy metals in mine tailing using fly ash and clay. Fly ash-clay-mine tailing system were investigated using XRD (X-ray diffractometer), XRF (X-ray fluorescence spectrometer), TG-DTA, SEM (Scanning Electron Microscope), Dilatometer and UTM with various mine tailing contents (~15 wt%). The fly ash used in this research was mainly composed of $SiO_2$ (33.01 wt%), $Al_2O_3$ (28.54 wt%), $K_2O$ (3.32 wt%), $Fe_2O_3$ (1.47 wt%), CaO(9.97 wt%). $SiO_2$ and $Al_2O_3$ composition of the clay was over 61 wt%. And the mine tailing have high composition of $SiO_2$ (26.91 wt%), CaO (24.25 wt%), $Fe_2O_3$ (22.97 wt%). Therefore, it was estimated that fly ash-clay-mine tailing have enough sintering characteristics. The shrinkage of specimens started at around $850^{\circ}C$ and changed little up to $1100^{\circ}C$, but increased markedly at above $1100^{\circ}C$. The shrinkage rate is strongly related to the decarbonization amount of coal fly ash. As the result of SEM, structure of the specimens with mine tailing addition showed more close than the one without mine tailing. Compressive strength of the specimens with mine tailing was highly increased to approximately 200~420 kgf/$cm^2$, it satisfied the first grade criterion for clay brick by KS L 4201. The specification of leaching characteristics of the sintered specimens were within the Korean regulation standard.