• Title/Summary/Keyword: 광물조성 변화

Search Result 242, Processing Time 0.017 seconds

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Genetic Environments of the High-purity Limestone in the Upper Zone of the Daegi Formation at the Jeongseon-Samcheok Area (정선-삼척 일대 대기층 상부 고품위 석회석의 생성환경)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Kyeong Bae;Kim, Hagsoo;Lee, Jeongsang;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.287-302
    • /
    • 2017
  • The carbonate rocks of the Daegi Formation are composed of the limestone at the upper and lower zones, and the dolomite at the middle zone, in which the upper zone has higher CaO content than others. The colors of carbonate rock in the Daegi Formation can be divided into five types; white, light brown, light gray, gray, and dark gray. The white to light gray colored rocks correspond to the high purity limestone with 53.15 ~ 55.64 wt. % CaO, and the light brown colored rocks contain 20.71 ~ 21.67 wt. % MgO. The bleaching of carbonate rocks are not related to CaO composition of the rocks, as light gray rocks tend to be higher in CaO content than those of the white rocks at the lower zone. The pelitic components are also occasionally increased in white limestone than light grey one. $Al_2O_3$ is one of the most difficult content to remove during hydrothermal processes, so the interpretation that the limestone is purified together with hydrothemral bleaching, has little merit. The wide range (over 16 ‰) of ${\delta}^{18}O_{SMOW}$, smaller variation (within 2 ‰) of ${\delta}^{13}C_{PDB}$ are apparent in both the upper and lower zones, which indicate the Daegi Formation had been affected overall by hydrothermal fluids. The K-Ar isotopic age of hydrothermal alteration in the GMI limestone mine is $85.1{\pm}1.7Ma$. Gradual change from grey through light grey to white limestone is accompaned by lower oxygen stable isotope values, which is major evidence that the hydrothermal effect is the main process of the bleaching. Although the Daegi Formation has suffered from hydrothermal activity and increase in whiteness, there is no clear evidence demonstrating the relationship between bleaching and high purity of limestone. The purification of limestone has nothing to do with the hydrothermal activity in this area. Instead, it should be considered that the change of sedimentary environment related to see-level fluctuation which can prevent deposition of pelitic components especially $Al_2O_3$ contrbuted to the formation of the high purity limestone in the upper zone of the Daegi Formation. Considering the evidences such as increase in CaO content of limestone by depth, gradual change from calcite to dolomite at the lower zones, and occurring the high purity limestone at the upper zone, the interpretation of sequence stratigraphic aspect to the formation of the high purity Daegi limestone appears to be more suitable than that of hydrothermal alteration origin.