• Title/Summary/Keyword: 광물명

Search Result 80, Processing Time 0.028 seconds

Establishing A Database for the Management and Utilization of Geological Research Data: Focusing on the Classification of Rocks and Minerals and 3D Models (지질 연구 자료의 관리와 활용을 위한 데이터베이스 구축: 암석, 광물의 분류와 3D 모델을 중심으로)

  • Ko, Bokyun;Lee, Chang-Wook;Park, Sungjae;Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • A great number of geological research data have been produced by individually conducted researchers and then personally stored in domestic universities and research institutes. However, it is difficult to share data with other researchers owing to low and limited accessibility. The purpose of this study is to systematically establish metadata for inaccessible data, to manage them collectively and to provide opportunities for utilizing the data to those who require efficient research methods. Approximately 1,000 geological specimens (900 rocks and fossils, 100 thin sections) were gathered, along with their metadata such as high-resolution photographs, classification, name, owner, address, and geographical coordinates of the sample site, to establish their features. Additionally, 3D modeling data for 100 rocks and fossils were generated. On the basis of this study, it is possible for researchers to access and share crucial geological data that have a high potential to be lost and have been neglected in restricted spaces; by avoiding the wasted time, energy, and costs caused by repetitive collection of data, researchers may perform effective research and achieve qualified and competitive research results. Moreover, vulnerable and important geological data in the field can be protected from damage caused by indiscriminate, repetitive collection of specimens that have previously been secured. Through the establishment of additional metadata concerning the diversity of rocks, fossils, and thin sections kept at other universities and research institutes, much more data can be recognized, leading to advanced research results. Furthermore, specialized comparison and analysis of basic mineralogy and petrology knowledge are anticipated, based on the use of the metadata.

Stabilization of Heavy Metal and CO2 Sequestration in Industrial Solid Waste Incineration Ash by Accelerated Carbonation (산업폐기물의 가속 탄산화법을 이용한 CO2 고용화 및 중금속 안정화 특성 연구)

  • Jung, Seong-Myung;Nam, Seong-Young;Um, Nam-Il;Seo, Joobeom;Yoo, Kwang-Suk;Ohm, Tae-In;Ahn, Ji-Whan
    • Mineral and Industry
    • /
    • v.26
    • /
    • pp.1-12
    • /
    • 2013
  • In this study, an accelerated carbonation process was applied to stabilize hazardous heavy metals of industrial solid waste incineration (ISWI) bottom ash and fly ash, and to reduce $CO_2$ emissions. The most commonly used method to stabilize heavy metals is accelerated carbonation using a high water-to-solid ratio including oxidation and carbonation reactions as well as neutralization of the pH, dissolution, and precipitation and sorption. This process has been recognized as having a significant effect on the leaching of heavy metals in alkaline materials such as ISWI ash. The accelerated carbonation process with $CO_2$ absorption was investigated to confirm the leaching behavior of heavy metals contained in ISWI ash including fly and bottom ash. Only the temperature of the chamber at atmospheric pressure was varied and the $CO_2$ concentration was kept constant at 99% while the water-to-solid ratio (L/S) was set at 0.3 and $3.0dm^3/kg$. In the result, the concentration of leached heavy metals and pH value decreased with increasing carbonation reaction time whereas the bottom ash showed no effect. The mechanism of heavy metal-stabilization is supported by two findings during the carbonation reaction. First, the carbonation reaction is sufficient to decrease the pH and to form an insoluble heavy metal-material that contributes to a reduction of the leaching. Second, the adsorbent compound in the bottom ash controls the leaching of heavy metals; the calcite formed by the carbonation reaction has high affinity of heavy metals. In addition, approximately 5 kg/ton and 27 kg/ton $CO_2$ were sequestrated in ISWI bottom ash and fly ash after the carbonation reaction, respectively.

  • PDF

Cognition of Middle School Students about 'The Material and Change of the Earth's Crust' ('지각의 물질과 변화' 단원에 대한 중학생들의 인식)

  • Hwang, Ji-Hyeon;Kim, Cheong-Bin;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.128-134
    • /
    • 2003
  • This study is focused on how much middle school students who study the chapter of first-grade science,'The Material and Change of the Earth's Crust', connect and understand what they learn with their environment and surroundings. This paper will discuss the connection between school education and living surroundings and how much the difference between the surroundings influences students' concepts and attitudes toward science. This study included 330students in the second year of middle schools from Jeonju, Buan and Jinan in Jeollabuk-do. This study analyzed students' concepts of mineral and rocks by having them observe samples in class. Only 16 percent of the students observe surrounding rocks with interest, but most of them are not interested. Chaesukgang and Mountain Mai are two local places in Jeollabuk-do which have a lot of specific stratum and geological structures, so it's easy for teachers to provide an outdoor experience by showing the students rocks and geological structures. Although which students have a little more observation experience than Jeonju area students, students who throughout the county seldom do outdoor observation learning. By collecting and observing the surrounding minerals and rocks, along with teaching the chapter 'The Materials and Change of the Earth's Crust', and by visiting outdoor locations while teaching about geological structures, we can improve our teaching.

Fabrication of Mineral Coating for Slow-releasing Action and Characteristic (완효성을 위한 광물질 피복의 제조와 용출특성연구)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Choi, Jong-Myung;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.377-382
    • /
    • 2007
  • Porous mineral coating have been fabricated and applied for basic research on their slow release action to a fertilizer. Feldspar was selected as raw mineral for the coating and two different particle sizes of powder were prepared. Slow-release action was estimated by using a potassium sulfate fertilizer. Spherical pellets were prepared with a pan-type pelletizer and then screened into sizes ranging 1.4 to 2.35mm. While the fertilizer pellets were rotated in the pelletizer again, the feldspar powder and 0.5% polyvinyl alcohol solution were simultaneously sprayed on the pellets. The fertilizer pellets coated with feldspar powder were fabricated. The pellets were heated to increase their strength and screened to sort by coating thickness. Potassium releasing tests were conducted for 40 days and the performance for slow-release action was estimated as functions of the heating temperature, coating thickness and raw mineral powder size. The Burst effect caused high initial releasing rate. Releasing kinetics was proportional to concentration of potassium in pellets. The pellet that was fabricated with $27.4{\mu}m$-sized feldspar and heated at $1050^{\circ}C$ showed a releasing rate of 43% on the 40th day.

Petrological Classification and Provenance Interpretation for the Stone Properties of Three-story Stone Pagoda in Beomhak-ri, Sancheong, Korea (산청 범학리 삼층석탑 석재의 암석학적 분류와 산지해석)

  • LEE Chan Hee;KANG San Ha;JO Young Hoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.70-88
    • /
    • 2024
  • Syenite is the name of a rock that has been used since ancient Roman period, but it is not widely distributed worldwide, and cases of its use as a material for Korean stone cultural heritages are very rare. However, the Three-story Stone Pagoda in Beomhak-ri of Sancheong, is composed of syenite, and each stone property has very similar rock phases, mineral compositions, grain sizes, colors and magnetic susceptibilities, indicating that they are all stones of the same rock series. Outcrops of syenite are relative widely distributed in the Beomhak-ri area, and it was mined for use as building stones until recently. This rock is almost identical in overall colors, occurrences, and mineralogical and petrological characteristics to that of the stone pagoda, and the geochemical evolution trends of the rocks are also very similar. In addition, numerous quarrying traces were identified in the same rock around the Beomhaksaji Temple site. In this way, the original stone properties of the Beomhak-ri Stone Pagoda were determined to be syenite because precise petrological and geochemical analysis and provenance interpretation was possible, the syenite was distributed around the temple site, and ancient quarrying traces were scattered in the same rocks. Therefore, it can be interpreted that the Beomhak-ri Stone Pagoda was processed and constructed using self-sufficient stone materials from the temple site area.

The Classification Ability with Naked Eyes According to the Understanding Level about Rocks of Pre-service Science Teachers (예비 과학교사들의 암석에 대한 이해수준에 따른 육안분류 능력)

  • Park, Kyeong-Jin;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.467-483
    • /
    • 2014
  • This study aimed to investigate the classification ability with naked eyes according to the understanding level about rocks of pre-service science teachers. We developed a questionnaire concerning misconception about minerals and rocks. The participants were 132 pre-service science teachers. Data were analyzed using Rasch model. Participants were divided into a master group and a novice group according to their understanding level. Seventeen rocks samples (6 igneous, 5 sedimentary, and 6 metamorphic rocks) were presented to pre-service science teachers to examine their classification ability, and they classified the rocks according to the criteria we provided. The study revealed three major findings. First, the pre-service science teachers mainly classified rocks according to textures, color, and grain size. Second, while they relatively easily classified igneous rocks, participants were confused when distinguishing sedimentary and metamorphic rocks from one another by using the same classification criteria. On the other hand, the understanding level of rocks has shown a statistically significant correlation with the classification ability in terms of the formation mechanism of rocks, whereas there was no statistically significant relationship found with determination of correct name of rocks. However, this study found that there was a statistically significant relationship between the classification ability with regard to formation mechanism of rocks and the determination of correct name of rocks.

The Comparison of the Effects of Mineral Taping and Standard Kinesio Taping on Reduces Pain and Edema in Knee Joints (노인의 무릎관절 통증과 부종 감소에 대한 미네랄 테이핑과 표준 키네시오 테이핑의 효과 비교)

  • Ko, Kyel;Moon, Sang-Ho;Bai, Sang-Duk;Kim, Jeong Ran;Kwon, Byong-An
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.311-319
    • /
    • 2020
  • The purpose of this study was to investigate the effects of mineral taping containing natural minerals powder on knee joint pain and swelling in the elderly. Forty elderly people with knee pain were divided into 20 mineral taping groups and 20 kinesio taping groups and randomly placed in a single blind manner. The study period was conducted from April 6, 2020 to April 7, 2020, and pain and blood flow by time point were examined before, after, and after 1 day of taping. Knee pain was significantly different in the post-test (F = 93.758, p <.001) and the post-day test (F = 93.758, p <0.001) for each measurement point. The blood flow test for edema was significantly different in the post-test (F = 48.648, p <0.001) and the post-day test (F = 35,427, p <0.001) for each measurement time point. There was no significant difference in the effect test result for each group (F = 0.160, p> 0.05). However, When comparing the retention effect after 1 day, the mineral taping group was excellent to the post-score than the Kinesio taping group. In the future, we believe that increasing the taping time and retention period will have a positive effect. It is thought that the results of this study will contribute to the study of taping materials in the future.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Seongsan Dickite Deposits, Korea; Estimation of Ore - Forming Temperature and aNa+/aK+ Ratio of the Hydrothermal Fluid (성산딕카이트광상에서의 백악기산성마그마티즘에 관련된 열수변질작용 ; 광상형성온도의 측정 및 열수용액의 aNa+/aK+)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.259-273
    • /
    • 1992
  • The Seongsan mine is one of the largest dickite deposits in the southwestern part of the Korean Peninsula. The main constithent minerals of the ore are dickite and quartz with accessory alunite, kaolinite and sericite. The geology around the Seongsan mine consists mainly of the late Cretaceous felsic volcanic rocks. In the studied area, these rocks make a synclinal structure with an axis of E-W direction plunging to the east. Most of the felsic volcanic rocks have undergone extensive hydrothermal alteration. The hydrothermally altered rocks can be classified into the following zones: Dickite, Dickite-Quartz, Quartz, Sericite, Albite and Chlorite zones, from the center to the margin of the alteration mass. Such zonal arrangement of altered rocks suggests that the country rocks, most of which are upper part of the rhyolite and welded tuff, were altered by strongly acid hydrothermal solutions. It is reasonable to consider that initial gas and solution containing $H_2S$ and other compounds were oxidized near the surface, and formed hydrothermal sulfuric acid solutions. The mineralogical and chemical changes of the altered rocks were investigated using various methods, and chemical composition of fifty-six samples of the altered rocks were obtained by wet chemical analysis and X.R.F. methods. On the basis of these analyses, it was found that some components such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO, $K_2O$, $Na_2O$ and $TiO_2$ were mobilized considerably from the original rocks. The formation temperature of the deposits was estimated as higher than $200^{\circ}C$ from fluid inclusion study of samples taken from the Quartz zone. On the basis of the chemical composition data on rocks and minerals and estimated temperatures, the hydrothermal solutions responsible for the formation of the Seongsan dickite deposits were estimated to have the composition: $m_{K^+}=0.003$, $m_{Na^+}=0.097$, $m_{SiO_2(aq.)}=0.008$ and pH=5.0, here "m" represents the molality (mole/kg $H_2O$).

  • PDF

Trend on the Metallurgical Technologies for the Platinum Group Metal by the Patent Analysis (특허(特許)로 본 백금족(白金族) 금속(金屬)의 제련기술(製鍊技術) 동향(動向))

  • Shin, Shun-Myung;Park, Jin-Tae;Lee, Jae-Chun;Son, Jeong-Soo;Yoon, Ho-Sung;Kim, Min-Seuk
    • Resources Recycling
    • /
    • v.18 no.5
    • /
    • pp.72-81
    • /
    • 2009
  • The demand for platinum group metals for various advanced industries has been growing due to their excellent physical and chemical properties. Since the deposit of platinum minerals are restricted to few countries, their recovery from various secondary resources has becomes an important issue to related industries for keeping the supply reliably. In this paper, patents on the metallurgical technologies for the platinum group metals were analyzed. The search of patent was limited to the open patents of USA (US), European Union (EP), Japan (IP), and Korea (KR) from 1986 to 2006. Patents were surveyed using key-words searching and selected by filtering criteria. The trend of patents was analyzed by the years, countries, companies, and technologies.

Mineralogy, Distribution and Origin of Some Pyrophyllite-Dickite-Alunite Deposits in the Haenam Area, Southwest Korea (전남 해남지역 납석, 명반석 및 도석광상의 분포, 광물조성 및 형성기구)

  • Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 1992
  • Mineral assemblages, mineral chemistries and stable isotope compositions of altered rocks of the Ogmae, Seongsan, Haenam and Gusi mines near the Haenam volcanic field in the southwestern part of the Korea peninsula were studied. Characteristic hydrothermal alteration zones in these deposits occurring in the Cretaceous volcanics and volcanogenic sediments, acidic tuff, and rhyolite, were outlined. Genetic environment with particular reference to the spatial and temporal relationships for these deposits were considered. The alteration zones defined by a mineral assemblage in the Ogmae and Seongsan deposits can be classified as alunite, pyrophyllite, kaolinite or dickite, quartz, illite or illite/smectite. Alunite was not developed in the Gusi and Haenam deposits. Boundaries between the adjacent zones are always gradational except for vein-type alunite. Alteration zones are superimposed upon each other in some localities. These deposits formed $71.8{\pm}2.8{\sim}76.6{\pm}2.9$ Ma ago, which is the almost same age of later volcanic rocks $79.4{\pm}1.7{\sim}82.8{\pm}1.2$ Ma, the Haenam Group, corresponding to Campanian. It indicates that hydrothermal alteration of these deposits appeared to be related to felsic volcanism in the area. Consideration of the stability between kaolinite, alunite, pyrite and pyrophyllite, and the geothermometry based on the mineral chemistry of illite and chlorite suggests that the maximum formation temperature for alunite and pyrophyllite can be estimated at about $250^{\circ}C$ and $240{\sim}290^{\circ}C$, respectively. It also suggests that these deposits were formed by acidic sulfate solution with high aqueous silica and potassium activity in a shallow depth environment. Compositional variation of alunite also suggests that the physico-chemical conditions fluctulated considerably during alteration processes, indicating shallow depth environment. The Haenam deposit was formed at a relatively greater depth than the others. The sulfur isotope composition of alunite and pyrite indicates that sulfur probably had a magmatic source, and the oxygen isotope composition for kaolinite indicates that the magmatic hydrothermal solution was diluted by circulating meteoric water.

  • PDF