• Title/Summary/Keyword: 광도 맵

Search Result 50, Processing Time 0.027 seconds

Research on Semiconductor Technology Roadmap by the Institute of Semiconductor Engineers (반도체공학회의 반도체 기술 발전 로드맵 연구 )

  • Hyunchol Shin;Ilku Nam;Jun-Mo Yang;Byung-Wook Min;Kyuho Lee;Chiweon Yoon;Jean Ho Song
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • Semiconductors are considered as one of the essential technologies in modern electronic devices and systems. Thus, it is required to predict and propose the semiconductor technology development roadmap. This study describes the key semiconductor technology issues, research and development trends, and their future roadmap, in the four areas such as the semiconductor device More-Moore integration technology, system-specific application processor technology, artificial intelligence/machine learning (AI/ML) processor technology, and outside system connectivity via optical and wireless communication.

Compensation for the Distorted WDM Signals through Dispersion Map of Trapezoid-Based Symmetry Configuration Combined with MSSI (MSSI와 결합된 사다리꼴 기반 대칭 구조의 분산 맵을 통한 WDM 신호의 왜곡 보상)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.552-558
    • /
    • 2024
  • In dispersion management, which involves additionally inserting a dispersion compensation fiber of an appropriate length to eliminate or reduce the chromatic dispersion of a single-mode fiber, determining the form of the dispersion map, which is the cumulative dispersion profile according to the transmission distance, is the most basic and important. In this paper, the various symmetric dispersion map based on trapezoids applied to dispersion-managed links combined with mid-span spectral inversion (MSSI), which compensates for the distortion caused by Kerr nonlinear effects through optical phase conjugation in the middle of the entire transmission link are proposed, and the effect of each dispersion map on distortion compensation of wavelength division multiplexed (WDM) signals is analyzed. Although the degree of compensation varies depending on the factors that determine the detailed shape of the proposed trapezoid-shaped dispersion map and RDPS (residual dispersion per span), overall, it was confirmed that distortion compensation for signals with a small extinction ratio was more effective than distortion compensation for WDM channel signals with a large extinction ratio.

Performance evaluation of hyperspectral image for morphological mapping (초분광 영상을 활용한 하상 측정 성능 평가 )

  • Youngcheol Seo;Dongsu Kim;Hojun You;Yeonghwa Gwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.225-225
    • /
    • 2023
  • 하상 측정은 하천 유지관리, 수공구조물 설계 및 보수, 수생태 조사의 필수적인 자료이다. 최근 4대강 대규모 사업 이후 자연적 안정화로 인해 침식 및 재퇴적이 진행되어 정밀 하상 모니터링이 요구되고 있다. 통상적인 하상 조사 기법은 레벨측량 및 RTK-GPS 등을 활용하여 점단위로 직접 계측하는 기법과 수심이 깊을 경우 ADCP와 같은 음향측심기법을 통해 하상변동을 계측하고 있다. 하지만 점단위 직접 측정은 사구와 사련과 같은 하상 구조 교란 및 계측 시 위험을 동반하고 수심자료의 측정오차가 크게 발생하는 한계점이 존재한다. 또한 초음파 방식의 경우 막음길이와 바닥면 노이즈 등의 한계점으로 50 cm 미만의 저수심부 하상 측정이 불가능한 실정이다. 이러한 한계점을 극복하기 위해 최근 드론의 보급으로 수심라이다(Bathymetry LiDAR), SFM, 드론 탑재 초분광 영상을 활용한 초분광수심법과 같은 저고도, 고해상도의 비접촉식 면단위 하상 측정 기법이 대안으로 각광받고 있고 최근 관심은 해당 최신 기술의 성능 점검 및 적용성 평가에 있다. 따라서 본 연구에서는 초분광수심법 중 보편적으로 적용할 수 있는 최적밴드비분석(OBRA)의 성능 점검과 실무 적용성을 국내 하천을 대상으로 검토하였다. 해당 기술의 실무 적용성 평가항목 중 수심 적용 범위가 경제적이고 효율적인 성능 평가의 주된 항목이다. 선행 연구에 따르면 감천을 대상으로 저수심부의 성능 평가를 진행한 결과 상세한 하상계측이 가능하다고 제시하였다. 따라서 본 연구는 낙동강-황강 합류부를 대상으로 전형적인 평수기 탁도 조건에서 초분광수심법을 적용할 경우 최대측정가능수심의 범위를 결정하는 방법 및 결과를 제시하려고 한다. 또한 현장실험 당시 합천댐 방류로 인하여 황강의 탁도가 높아진 상태에 기인하여 고탁도 조건에서 초분광수심법의 적용성 평가도 추가 검토하였다. 해당 연구는 수심과 밴드비의 비선형성을 통해 최적 밴드비 분석의 결과로 도출될 수 있는 상관계수와 평균 제곱근 오차(RMSE)의 동향을 보아 다양한 시나리오의 배제수심을 통해 최대측정가능수심을 산정하였으며 그 이상의 범위는 수심맵 산정에서 제외하였다. 그 결과로 낙동강 본류에서 2.5 m 이하, 황강 지류에서 1.25 m 이하의 최대측정가능수심이 나타났고 해당 범위 이하에서는 상세한 하상이 나타났다. 또한 고탁도 조건인 황강에서는 낙동강에 비해 절반 수준의 최대측정가능수심 범위가 나타나 탁도 조건에 따른 초분광수심법의 한계가 있는 것을 확인하였다.

  • PDF

Sensitivity illumination system using biological signal (생체신호를 이용한 감성조명 시스템)

  • Han, Young-Oh;Kim, Dong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.499-508
    • /
    • 2014
  • In this paper, we implemented a LED sensitivity illumination system, being driven in response to changes in the biological signals of GSR and PPG signal. After measuring biological signals of a human body from GSR and PPG sensor modules, MCU decided the state of relaxation or arousal of the subject, being based on the wake relaxation identifying map proposed in this paper. A developed LED sensitivity illumination system makes the subject to reach a normal state by giving a change of the LED illumination color, corresponding to a state of the subject.

Multi-spectral Flash Imaging using Region-based Weight Map (영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득)

  • Choi, Bong-Seok;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.127-135
    • /
    • 2013
  • In order to acquire images in low-light environments, it is usually necessary to adopt long exposure times or resort to flash lights. However, flashes often induce color distortion, cause the red-eye effect and can be disturbing to subjects. On the other hand, long-exposure shots are susceptible to subject-motion, as well as motion-blur due to camera shake when performed hand-held. A recently introduced technique to overcome the limitations of traditional low-light photography is that of multi-spectral flash. Multi-spectral flash images are a combination of UV/IR and visible spectrum information. The general idea is that of retrieving details from the UV/IR spectrum and color from the visible spectrum. However, multi-spectral flash images themselves are subject to color distortion and noise. This works presents a method to compute multi-spectral flash images so that noise can be reduced and color accuracy improved. The proposed approach is a previously seen optimization method, improved by the introduction of a weight map used to discriminate uniform regions from detail regions. The weight map is generated by applying canny edge operator and it is applied to the optimization process for discriminating the weights in uniform region and edge. Accordingly, the weight of color information is increased in the uniform region and the detail region of weight is decreased in detail region. Therefore, the proposed method can be enhancing color reproduction and removing artifacts. The performance of the proposed method has been objectively evaluated using long-exposure shots as reference.

Map Matching Algorithm for Self-Contained Positioning (자립식 위치측정을 위한 Map Matching 알고리즘)

  • Lee, Jong-Hun;Kang, Tae-Ho;Kim, Jin-Seo;Lee, Woo-Yeul;Chae, Kwan-Soo;Kim, Young-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.213-220
    • /
    • 1995
  • Map Matching is the method for correcting the current position from dead reckoning in Car Navigation System. In this paper, we proposed the new map matching algorithm that can correct the positioning error caused by sensors and digital map data around the cross road area. To do this, first we set the error boundary of the cross road area by combining the relative error of moving distance and the absolute error of road length, second, we find out the starting point of turning within the determined error boundary of the cross point area, third, we compare the turning angle of the car to the angle of each possible road, and the last, we decide the matched road. We used wheel sensor as a speed sensor and used optical fiber gyro as a directional sensor, and assembled the sensors to the notebook computer. We testified our algorithm by driving the Daejeon area-which is a part of south Korea-as a test area. And we proved the efficiency by doing that.

  • PDF

3D Simulation of Thin Film using Contour Analysis of Interference Fringe Image and Interpolation Method (간섭무늬 영상 등고선 해석과 보간법을 이용한 박막의 삼차원 정보 형상화)

  • Kim, Jin-Hyoung;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • In this paper we proposes a new framework to obtain 3D shape information of thin film rapidly. The conventional equipments based on reflectometry are not suitable for obtaining 3D overall shape information of thin film rapidly since they require more than 30 minutes to measure the absolute thickness for 170 points. The proposed framework is based on an image analysis method that extracts contour lines from interference fringes images using Canny edge detector. The absolute thickness for contour lines are measured and then a height map from the contour lines is obtained by interpolation using Borgefors distance transformation. The extracted height map is visualized using the DirectX 3D terrain rendering method. The proposed framework can provide 3D overall shape information of thin film in about 5 minutes since relatively small number of real measurement for contour lines is required.

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

Deep Learning-Based Lighting Estimation for Indoor and Outdoor (딥러닝기반 실내와 실외 환경에서의 광원 추출)

  • Lee, Jiwon;Seo, Kwanggyoon;Lee, Hanui;Yoo, Jung Eun;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.3
    • /
    • pp.31-42
    • /
    • 2021
  • We propose a deep learning-based method that can estimate an appropriate lighting of both indoor and outdoor images. The method consists of two networks: Crop-to-PanoLDR network and LDR-to-HDR network. The Crop-to-PanoLDR network predicts a low dynamic range (LDR) environment map from a single partially observed normal field of view image, and the LDR-to-HDR network transforms the predicted LDR image into a high dynamic range (HDR) environment map which includes the high intensity light information. The HDR environment map generated through this process is applied when rendering virtual objects in the given image. The direction of the estimated light along with ambient light illuminating the virtual object is examined to verify the effectiveness of the proposed method. For this, the results from our method are compared with those from the methods that consider either indoor images or outdoor images only. In addition, the effect of the loss function, which plays the role of classifying images into indoor or outdoor was tested and verified. Finally, a user test was conducted to compare the quality of the environment map created in this study with those created by existing research.

Net Residual Dispersion in Inline Dispersion Managed Optical Transmission Link (Inline 분산 제어 광전송 링크에서 전체 잉여 분산)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • A configuration scheme of optical link effectively compensating chromatic dispersion and nonlinear effects accumulated in optical link with single mode fibers (SMFs) is proposed. The proposed optical link configuration consist of optical phase conjugator (OPC) placed at middle of total transmission length and inline dispersion management (DM) as a role of compensating cumulated in each optical repeater of SMF by dispersion compensating fiber (DCF). Net residual dispersion (NRD) of this optical link is designed to be controlled through precompensation and postcompensating. The precompensation and postcompensation are designed to be determined by DCF after transmitter and before receiver, respectively. It is confirmed that optical link configuration with symmetric dispersion map with respect to OPC, which is implemented by controlling NRD through both precompensation and postcompensation, is better to be effective and adaptive than other configuration with NRD controlled by only precompensation or postcompensation.

  • PDF