• Title/Summary/Keyword: 관측지점

Search Result 1,813, Processing Time 0.035 seconds

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

Runoff Simulation of An Urban Drainage System Using Radar Rainfall Data (레이더 강우 자료를 이용한 도시유역의 유출 모의)

  • Kang, Na Rae;Noh, Hui Seung;Lee, Jong So;Lim, Sang Hun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.413-422
    • /
    • 2013
  • In recent, the rainfall is showing different properties in space and time but the ground rain gauge only can observe rainfall at a point. This means the ground rain gauge has the limitations in spatial and temporal resolutions to measure rainfall and so there is a need to utilize radar rainfall which can consider spatial distribution of rainfall This study tried to apply radar rainfall for runoff simulation on an urban drainage system. The study area is Guro-gu, Seoul and we divided study area into subbasins based on rain gauge network of AWS(Automatic Weather station). Then the radar rainfalls were adjusted using rainfall data of rain gauge stations the areal rainfalls were obtained. The runoffs were simulated by using XP-SWMM model in subbasins of an urban drainage system. As the results, the adjusted radar rainfalls were underestimated in the range of 60 to 95% of rain gauge rainfalls and so the simulated runoffs from the adjusted radar and gauge rainfalls also showed the differences. The runoff peak time from radar rainfall was occurred more fast than that from gauge rainfall.

A Study on Spatial Downscaling of Satellite-based Soil Moisture Data (토양수분 위성자료의 공간상세화에 관한 연구)

  • Shin, Dae Yun;Lee, Yang Won;Park, Mun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.414-414
    • /
    • 2017
  • 토양수분은 지면환경에서 일어나는 수문 및 에너지 순환을 이해하는 데 있어 중요한 기상인자이다. 토양수분 현장관측은 땅속에 매설된 센서에 의해 상당히 정확하게 이루어지만, 관측점 수가 충분치 않아 공간적 연속성을 확보하지 못하는 어려움이 존재한다. 이에 광역적 및 연속적 관측이 가능한 마이크로파 위성센서가 토양수분 정보 획득을 위한 보조수단으로서 그 중요성이 부각되고 있다. 마이크로파 위성센서는 구름 등 기상조건의 제약을 받지 않으며, 1978년 이래 현재까지 여러 위성에 의해 25 km 및 10 km 해상도의 전지구 토양수분자료가 생산되어 왔다. 마이크로파 센서를 이용한 토양수분자료는 동일지점에 대하여 하루 2회 정도 산출되므로 적절한 시간분해능을 가지지만, 공간해상도가 최고 10 km로서 지역규모의 수문분석에 적용하기에는 충분치 않다. 이러한 토양수분자료의 공간해상도 문제 해결을 위하여 다양한 지면환경요소를 활용한 통계적 다운스케일링이 대안으로 제시되었다. 최근의 선행연구들은 대부분 방정식을 이용한 결합모형을 통해 통계적 다운스케일링을 수행하였는데, 회귀식과 같은 선형결합뿐 아니라 신경망이나 기계학습 등의 비선형결합에서도, 불가피하게 발생할 수밖에 없는 잔차(residual)로 인하여 다운스케일링 전후의 공간분포 패턴이 달라져버리는 문제를 안고 있었다. 회귀분석에 잔차의 공간내삽을 결합시킨 회귀크리깅(regression kriging)은 잔차보정을 통해 이러한 문제를 해결함으로써 다운스케일링 전후의 공간분포 일관성을 보장하는 기법이다. 이 연구에서는 회귀크리깅을 이용하여 일자별 AMSR2(Advanced Microwave Scanning Radiometer 2) 토양수분 자료를 10 km에서 1 km 해상도로 다운스케일링하고, 다운스케일링 전후의 자료패턴 일관성을 평가한다. 지면온도(LST), 지면온도상승률(RR), 식생온도건조지수(TVDI)는 일자별로 DB를 구축하였고, 식생지수(NDVI), 수분지수(NDWI), 지면알베도(SA)는 8일 간격으로 DB를 구축하였다. 이러한 8일 간격의 자료를 일자별로 변환하기 위하여 큐빅스플라인(cubic spline)을 이용하여 시계열내삽을 수행하였다. 또한 상이한 공간해상도의 자료는 최근린법을 이용하여 다운스케일링 목표해상도인 1 km에 맞도록 변환하였다. 우선 저해상도 스케일에서 추정치를 산출하기 위해서는 저해상도 픽셀별로 이에 해당하는 복수의 고해상도 픽셀을 평균화하여 대응시켜야 하며, 이를 통해 6개의 설명변수(LST, RR, TVDI, NDVI, NDWI, SA)와 AMSR2 토양수분을 반응변수로 하는 다중회귀식을 도출하였다. 이식을 고해상도 스케일의 설명변수들에 적용하면 고해상도 토양수분 추정치가 산출되는데, 이때 추정치와 원자료의 차이에 해당하는 잔차에 대한 보정이 필요하다. 저해상도 스케일로 존재하는 잔차를 크리깅 공간내삽을 통해 고해상도로 변환한 후 이를 고해상도 추정치에 부가해주는 방식으로 잔차보정이 이루어짐으로써, 다운스케일링 전후의 자료패턴 일관성이 유지되는(r>0.95) 공간상세화된 토양수분 자료를 생산할 수 있다.

  • PDF

Estimation of Flood Discharge using Satellite-derived Rainfall in Abroad Watershed - A Case Study of Pasig-Marakina, Phillippines - (위성강우를 이용한 해외 유역 홍수량 추정 - 필리핀 파시그-마라키나강 유역을 대상으로 -)

  • Kim, Joo Hun;Choi, Yun Seok;Kim, Kyeong Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.398-398
    • /
    • 2018
  • OECD 발표에 의하면 물산업 관련 인프라 투자 전망은 전세계 GDP 대비 2010~2020년 약 1.01%에서 2020~2030년 약 1.03%로 확대될 전망으로 다른 통신, 전력, 철도 인프라 투자수요보다 많을 것으로 전망하고 있다(파이넨셜 뉴스, 2013.3.21.). 우리나라는 2005년 베트남 홍강종합개발사업을 시작으로 2015년 기준으로 세계 35개국에 진출하고 있다. 그러나 대부분의 물 산업 진출 대상 국가는 미계측 유역이 많고 지상에서 계측된 수문 자료가 부족한 실정이다. Namgung and Lee(2014)에 의하면 네팔의 수력발전소 건설에 관측된 강우량 자료가 없어 발전소 하류 10km 지점의 유하량 자료를 이용하여 자료의 정확도 검증을 대신하여 적용한 바 있다. 이와 같이 계측자료가 없거나 부족한 지역에 대하여 기상 위성을 이용하여 추정된 강수량 자료가 해당 지역의 강수 특성을 파악하는데 중요한 자료로 이용될 수 있다. 글로벌 위성 기반의 강수량 관측에 대한 역사는 1979년에 IR방법에 의해 위성으로부터 강우자료를 유도하는 개념이 도입된 이후 1987년 다중 채널의 마이크로파(MW) 복사계를 이용한 방법, 이후 두 IR과 MW를 혼합한 방법에서, 1997년 TRMM위성의 PR(Precpipitation Radar)의 레이더를 이용하는 방법, 그리고 2014년 GPM 핵심 위성(GPM Core Observatory)에 탑재된 Dual PR에 의한 방법으로 위성강수의 정확도를 매우 높여가고 있다. 본 연구는 KOICA 사업으로 진행중인 필리핀 메트로 마닐라 홍수조기경보 및 모니터링 체계 구축사업 중 파시그-마라키나강(Pasig-Marakina) 유역의 2012년 8월의 홍수사상에 대한 위성강우 및 글로벌 지형자료를 이용하여 홍수 유출량을 추정하는 것으로 목적으로 하고 있다. 유역내 6개 관측소의 일일 강우량 자료와 GPM IMERG 일강우량 자료 상관분석 결과 약 0.623, Bias는 -0.147, RMSE는 15.7정도로 분석되었다. 홍수량 분석은 2012년 8월 홍수가 발생한 시기인 2012년 8월 1일 00(UTC)부터 2012년 8월 16일 00(UTC)까지의 1시간 간격의 위성강우자료와 글로벌 지형자료를 이용하였고, 한국건설기술연구원의 MapWindow 기반 GRM 모형(mwGRM)을 이용하였다. 분석 결과 첨부홍수가 발생한 시기는 8월 7일 18:00(UTC)였고, 첨두 홍수량은 $4,073.9m^3/sec$로 분석되었다. 향후 수위-유량 관계식에 의해 정확도평가를 수행할 계획이다.

  • PDF

Analysis of relation between rainfall pattern and runoff response in Andong-dam catchment (안동댐유역의 강우패턴과 유출반응의 관계 분석)

  • Kim, Nam Won;Shin, Mun-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.361-361
    • /
    • 2018
  • 강우패턴이 유출반응에 미치는 영향을 분석하는 것은 수문연구에서 중요한 주제 중 하나이며 댐유역에 대해 기상 및 유출자료를 사용하여 이를 상세히 분석함으로써 이수기에 필요한 수자원을 예측 및 확보하는 것은 중요하다. 강우패턴이 유출반응에 미치는 영향을 상세히 분석하기 위해서는 댐유역의 상류부터 하류까지 많은 유출관측지점의 자료를 사용해야 하지만 상류의 소유역들은 대부분 미계측유역이라는 문제점이 있다. 본 연구에서는 자료공간확장 방법을 사용하여 미계측유역의 유출자료를 생성하고 이 자료들을 분석함으로써 강우패턴이 유출반응에 미치는 영향을 자세히 분석하였다. 먼저 안동댐유역내 관측유역인 안동댐, 도산, 소천유역을 대상으로 1989년부터 2009년까지의 기간 중 20개의 사상에 대하여 분포형 모형인 GRM 모형의 적용성을 조사하였으며 전반적으로 0.5 Nash-Sutcliffe 계수 이상의 타당한 모형효율성 결과를 얻었다. 그 후 자료공간확장 방법을 사용하여 안동댐 상류에 위치한 47개의 미계측 소유역들의 유출자료를 생성하였으며 세 관측유역을 포함한 총 50개 유역의 유출자료를 연구에 사용하였다. 그리고 총 50개 유역의 평균강우량 시계열 자료를 생성하고 이동평균방법을 사용하여 이 평균강우량 자료를 강우강도-지속시간 곡선으로 변환하였다. 강우패턴과 유출반응간의 관계를 분석하기 위해 합리식의 유출계수와 강우강도비율을 사용하였으며 유출계수와 강우강도비율을 계산하기 위해 유역별 도달시간을 사용하였다. 여기서 강우강도비율은 강우강도지속시간 곡선을 사용하여 첨두강우강도를 도달시간에 해당하는 평균강우강도로 나눠준 값이다. 그리고 이 유출계수와 강우강도비율을 유역면적에 대해 도시함으로써 그 경향을 조사하였다. 그 결과 20개 사상은 유출계수, 강우강도비율과 유역면적을 사용하여 물리적으로 타당한 네 가지의 타입으로 분류될 수 있었다. 이 네 가지 타입은 강우의 이동 및 분포와 상관이 있었는데 첫번째 타입은 안동댐 유역전체에 강우가 거의 등분포하는 경우, 두 번째는 강우가 유역의 상류방향으로 이동하는 경우, 세 번째는 강우가 유역의 하류방향으로 이동하는 경우, 그리고 네 번째는 강우가 유역에 무작위로 분포하는 경우였다. 이것은 어떠한 사상에 대해서도 유출계수와 강우강도비율을 유역면적에 대해 도시함으로써 강우패턴과 유출간의 관계를 분석할 수 있다는 것을 나타낸다. 그리고 이 네 가지 타입에 대한 강우사상들의 비율은 각각 65%, 20%, 10%, 그리고 5% 였다. 이 타입별 강우사상의 비율은 향후 강우-유출관계에 의한 수자원 예측 및 확보에 활용될 수 있다.

  • PDF

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

Terrestrial Magnetospheric Observations and Models in Korea (국내 우주환경 자료 보유 현황: 자기권)

  • Park, Kyung Sun;Min, Kyungguk;Division of Solar and Space Environment of KSSS,
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.178-198
    • /
    • 2021
  • The Solar Space Environment Division of the Korean Society of Space Science (KSSS) has recently conducted a survey among the domestic researchers affiliated with academia, national research institutes, and for-profit institutes of how the data and models in their professional research field are produced, maintained, and utilized. The primary purpose of this survey is to increase the awareness and utilization of the space environment data and models as well as to promote constructive collaborations among the domestic and international researchers. The models and data surveyed are categorized into three sub-fields: the solar and interplanetary space, the (terrestrial) magnetosphere, and the ionosphere and upper atmosphere. The present paper reports the survey results in the "Magnetosphere" category. The survey shows that the domestically produced data in this category are far less than the data produced in other categories. This can be understood in part as follows: Magnetospheric research relies heavily on the in-situ observations but the development and operation of space-hardened satellites require a significant investment. Nevertheless, the recent publications show an increasing trend of research using the data from the ground stations and the recently launched domestic space missions. In the modeling front, there are first-principles physics models covering from the magnetospheric scale to the sub-ion scale and the models geared towards the space weather prediction. The detailed survey results can be accessed from the KSSS website (http://ksss.or.kr/).

Flow rate prediction at Paldang Bridge using deep learning models (딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측)

  • Seong, Yeongjeong;Park, Kidoo;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.565-575
    • /
    • 2022
  • Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.